10,858 research outputs found

    Real-Time Vocal Tract Modelling

    Get PDF
    To date, most speech synthesis techniques have relied upon the representation of the vocal tract by some form of filter, a typical example being linear predictive coding (LPC). This paper describes the development of a physiologically realistic model of the vocal tract using the well-established technique of transmission line modelling (TLM). This technique is based on the principle of wave scattering at transmission line segment boundaries and may be used in one, two, or three dimensions. This work uses this technique to model the vocal tract using a one-dimensional transmission line. A six-port scattering node is applied in the region separating the pharyngeal, oral, and the nasal parts of the vocal tract

    A physiologically inspired model for solving the cocktail party problem.

    Get PDF
    At a cocktail party, we can broadly monitor the entire acoustic scene to detect important cues (e.g., our names being called, or the fire alarm going off), or selectively listen to a target sound source (e.g., a conversation partner). It has recently been observed that individual neurons in the avian field L (analog to the mammalian auditory cortex) can display broad spatial tuning to single targets and selective tuning to a target embedded in spatially distributed sound mixtures. Here, we describe a model inspired by these experimental observations and apply it to process mixtures of human speech sentences. This processing is realized in the neural spiking domain. It converts binaural acoustic inputs into cortical spike trains using a multi-stage model composed of a cochlear filter-bank, a midbrain spatial-localization network, and a cortical network. The output spike trains of the cortical network are then converted back into an acoustic waveform, using a stimulus reconstruction technique. The intelligibility of the reconstructed output is quantified using an objective measure of speech intelligibility. We apply the algorithm to single and multi-talker speech to demonstrate that the physiologically inspired algorithm is able to achieve intelligible reconstruction of an "attended" target sentence embedded in two other non-attended masker sentences. The algorithm is also robust to masker level and displays performance trends comparable to humans. The ideas from this work may help improve the performance of hearing assistive devices (e.g., hearing aids and cochlear implants), speech-recognition technology, and computational algorithms for processing natural scenes cluttered with spatially distributed acoustic objects.R01 DC000100 - NIDCD NIH HHSPublished versio

    RRL: A Rich Representation Language for the Description of Agent Behaviour in NECA

    Get PDF
    In this paper, we describe the Rich Representation Language (RRL) which is used in the NECA system. The NECA system generates interactions between two or more animated characters. The RRL is a formal framework for representing the information that is exchanged at the interfaces between the various NECA system modules

    Pauses and the temporal structure of speech

    Get PDF
    Natural-sounding speech synthesis requires close control over the temporal structure of the speech flow. This includes a full predictive scheme for the durational structure and in particuliar the prolongation of final syllables of lexemes as well as for the pausal structure in the utterance. In this chapter, a description of the temporal structure and the summary of the numerous factors that modify it are presented. In the second part, predictive schemes for the temporal structure of speech ("performance structures") are introduced, and their potential for characterising the overall prosodic structure of speech is demonstrated

    Real-time dynamic articulations in the 2-D waveguide mesh vocal tract model

    Get PDF
    Time domain articulatory vocal tract modeling in one-dimensional (1-D) is well established. Previous studies into two-dimensional (2-D) simulation of wave propagation in the vocal tract have shown it to present accurate static vowel synthesis. However, little has been done to demonstrate how such a model might accommodate the dynamic tract shape changes necessary in modeling speech. Two methods of applying the area function to the 2-D digital waveguide mesh vocal tract model are presented here. First, a method based on mapping the cross-sectional area onto the number of waveguides across the mesh, termed a widthwise mapping approach is detailed. Discontinuity problems associated with the dynamic manipulation of the model are highlighted. Second, a new method is examined that uses a static-shaped rectangular mesh with the area function translated into an impedance map which is then applied to each waveguide. Two approaches for constructing such a map are demonstrated; one using a linear impedance increase to model a constriction to the tract and another using a raised cosine function. Recommendations are made towards the use of the cosine method as it allows for a wider central propagational channel. It is also shown that this impedance mapping approach allows for stable dynamic shape changes and also permits a reduction in sampling frequency leading to real-time interaction with the model

    An analysis-by-synthesis approach to vocal tract modeling for robust speech recognition

    Full text link
    In this thesis we present a novel approach to speech recognition that incorporates knowledge of the speech production process. The major contribution is the development of a speech recognition system that is motivated by the physical generative process of speech, rather than the purely statistical approach that has been the basis for virtually all current recognizers. We follow an analysis-by-synthesis approach. We begin by attributing a physical meaning to the inner states of the recognition system pertaining to the configurations the human vocal tract takes over time. We utilize a geometric model of the vocal tract, adapt it to our speakers, and derive realistic vocal tract shapes from electromagnetic articulograph (EMA) measurements in the MOCHA database. We then synthesize speech from the vocal tract configurations using a physiologically-motivated articulatory synthesis model of speech generation. Finally, the observation probability of the Hidden Markov Model (HMM) used for phone classification is a function of the distortion between the speech synthesized from the vocal tract configurations and the real speech. The output of each state in the HMM is based on a mixture of density functions
    corecore