1,100,420 research outputs found
Stochastic Resonance Can Drive Adaptive Physiological Processes
Stochastic resonance (SR) is a concept from the physics and engineering communities that has applicability to both systems physiology and other living systems. In this paper, it will be argued that stochastic resonance plays a role in driving behavior in neuromechanical systems. The theory of stochastic resonance will be discussed, followed by a series of expected outcomes, and two tests of stochastic resonance in an experimental setting. These tests are exploratory in nature, and provide a means to parameterize systems that couple biological and mechanical components. Finally, the potential role of stochastic resonance in adaptive physiological systems will be discussed
VEGF(164)-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization
Hypoxia-induced VEGF governs both physiological retinal vascular development and pathological retinal neovascularization. In the current paper, the mechanisms of physiological and pathological neovascularization are compared and contrasted. During pathological neovascularization, both the absolute and relative expression levels for VEGF(164) increased to a greater degree than during physiological neovascularization. Furthermore, extensive leukocyte adhesion was observed at the leading edge of pathological, but not physiological, neovascularization. When a VEGF(164)-specific neutralizing aptamer was administered, it potently suppressed the leukocyte adhesion and pathological neovascularization, whereas it had little or no effect on physiological neovascularization. In parallel experiments, genetically altered VEGF(164)-deficient (VEGF(120/188)) mice exhibited no difference in physiological neovascularization when compared with wild-type (VEGF(+/+)) controls. In contrast, administration of a VEGFk-1/Fc fusion protein, which blocks all VEGF isoforms, led to significant suppression of both pathological and physiological neovascularization. In addition, the targeted inactivation of monocyte lineage cells with clodronate-liposomes led to the suppression of pathological neovascularization. Conversely, the blockade of T lymphocyte-mediated immune responses with an anti-CD2 antibody exacerbated pathological neovascularization. These data highlight important molecular and cellular differences between physiological and pathological retinal neovascularization. During pathological neovascularization, VEGF(164) selectively induces inflammation and cellular immunity. These processes provide positive and negative angiogenic regulation, respectively. Together, new therapeutic approaches for selectively targeting pathological, but not physiological, retinal neovascularization are outlined
Influence of different kind of clothing material on selected cardiovascular, respiratory and psychomotor parameters during moderate physical exercise
Objectives: The aim of the experiment was to analyze the influence that the clothing material may have on human physiology and thermal comfort both at rest and physical effort to answer the question which fabric is better, a natural or a synthetic one. Materials and Methods: We measured some psychomotor parameters: critical flicker frequency (CFF), reaction time to auditory/visual stimuli (RT), concentration of attention (CA); cardiovascular parameters: blood pressure (BP), heart rate (HR) and respiratory parameters: tidal volume (VT), minute ventilation (VE), oxygen consumption (VO2), carbon dioxide output (VCO2), respiratory exchange ratio (RER) in human volunteers before, during and after physical effort. The subjects performed a 15-min treadmill test on treadmill wearing clothes made of two different materials: 100% coarse wool and 100% acrylic. An interview was conducted directly before the exercise test to assess the subjects' general mood and wellbeing on that day. Besides, before and after the test, the subjects in their own words described the sensation they felt with respect to the physiological comfort of particular clothing. Results: The results showed that wearing clothes made of different fabrics had some influence on the cardiovascular and respiratory parameters during physical effort but it did not have any effect on the psychomotor skills. The perception of physiological comfort by the subjects wearing coarse wool or acrylic depended on their physiological state and differed at rest and after the physical effort. Conclusions: The course of physiological processes depends on the kind of clothing a given person is wearing. It is not possible to clearly define which of the two clothing materials: natural — wool, or synthetic — acrylic is better. Each of them exerts a different effect on the human organism. The usefulness of a given type of clothing material seems to depend on the human physiological state and the related thermoregulatory processes
Hydrogen sulphide regulates inward-rectifying K+ channels in conjunction with stomatal closure
Hydrogen sulphide (H2S) is the third biological gasotransmitter and, in animals, affects many physiological processes by modulating ion channels. H2S has been reported to protect plants from oxidative stress in diverse physiological responses. H2S closes stomata, but the underlying mechanism remains elusive. Here we report the selective inactivation of current carried by inward-rectifying K+ channels (IKIN) of tobacco guard cells and demonstrate its close parallel with stomatal closure evoked by submicromolar concentrations of H2S. Experiments to scavenge H2S suggested an effect that is separable from that of abscisic acid, which is associated with water stress. Thus, H2S appears to associate with a new and as yet unresolved signalling pathway that selectively targets IKIN
Monitoring Cognitive and Emotional Processes Through Pupil and Cardiac Response During Dynamic Versus Logical Task
The paper deals with the links between physiological measurements and cognitive and emotional functioning. As long as the operator is a key agent in charge of complex systems, the definition of metrics able to predict his performance is a great challenge. The measurement of the physiological state is a very promising way but a very acute comprehension is required; in particular few studies compare autonomous nervous system reactivity according to specific cognitive processes during task performance and task related psychological stress is often ignored. We compared physiological parameters recorded on 24 healthy subjects facing two neuropsychological tasks: a dynamic task that require problem solving in a world that continually evolves over time and a logical task representative of cognitive processes performed by operators facing everyday problem solving. Results showed that the mean pupil diameter change was higher during the dynamic task; conversely, the heart rate was more elevated during the logical task. Finally, the systolic blood pressure seemed to be strongly sensitive to psychological stress. A better taking into account of the precise influence of a given cognitive activity and both workload and related task-induced psychological stress during task performance is a promising way to better monitor operators in complex working situations to detect mental overload or pejorative stress factor of error
The Virtual Runner Learning Game
A learning game has been developed which allows learners to study and learn about the significance of three important variables in human physiology (lactate, glycogen, and hydration) and their influence on sports performance during running. The player can control the speed of the runner, and as a consequence the resulting physiological processes are simulated in real-time. The performance degradation of the runner due to these processes requires that different strategies for pacing the running speed are applied by the player, depending on the total length of the run. The game has been positively evaluated in a real learning context of academic physiology teaching
Beyond self-eating: The control of nonautophagic functions and signaling pathways by autophagy-related proteins.
The identification of conserved autophagy-related proteins (ATGs) that mediate bulk degradation of cytosolic material laid the foundation for breakthroughs linking autophagy to a litany of physiological processes and disease conditions. Recent discoveries are revealing that these same ATGs orchestrate processes that are related to, and yet clearly distinct from, classic autophagy. Autophagy-related functions include secretion, trafficking of phagocytosed material, replication and egress of viral particles, and regulation of inflammatory and immune signaling cascades. Here, we define common processes dependent on ATGs, and discuss the challenges in mechanistically separating autophagy from these related pathways. Elucidating the molecular events that distinguish how individual ATGs function promises to improve our understanding of the origin of diseases ranging from autoimmunity to cancer
- …
