72 research outputs found

    Saliency Guided Summarization of Molecular Dynamics Simulations

    Get PDF
    We present a novel method to measure saliency in molecular dynamics simulation data. This saliency measure is based on a multiscale center-surround mechanism, which is fast and efficient to compute. We explore the use of the saliency function to guide the selection of representative and anomalous timesteps for summarization of simulations. To this end, we also introduce a multiscale keyframe selection procedure which automatically provides keyframes representing the simulation at varying levels of coarseness. We compare our saliency guided keyframe approach against other methods, and show that it consistently selects superior keyframes as measured by their predictive power in reconstructing the simulation

    Self-supervised learning to detect key frames in videos

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Detecting key frames in videos is a common problem in many applications such as video classification, action recognition and video summarization. These tasks can be performed more efficiently using only a handful of key frames rather than the full video. Existing key frame detection approaches are mostly designed for supervised learning and require manual labelling of key frames in a large corpus of training data to train the models. Labelling requires human annotators from different backgrounds to annotate key frames in videos which is not only expensive and time consuming but also prone to subjective errors and inconsistencies between the labelers. To overcome these problems, we propose an automatic self-supervised method for detecting key frames in a video. Our method comprises a two-stream ConvNet and a novel automatic annotation architecture able to reliably annotate key frames in a video for self-supervised learning of the ConvNet. The proposed ConvNet learns deep appearance and motion features to detect frames that are unique. The trained network is then able to detect key frames in test videos. Extensive experiments on UCF101 human action and video summarization VSUMM datasets demonstrates the effectiveness of our proposed method

    Learning Segment Similarity and Alignment in Large-Scale Content Based Video Retrieval

    Full text link
    With the explosive growth of web videos in recent years, large-scale Content-Based Video Retrieval (CBVR) becomes increasingly essential in video filtering, recommendation, and copyright protection. Segment-level CBVR (S-CBVR) locates the start and end time of similar segments in finer granularity, which is beneficial for user browsing efficiency and infringement detection especially in long video scenarios. The challenge of S-CBVR task is how to achieve high temporal alignment accuracy with efficient computation and low storage consumption. In this paper, we propose a Segment Similarity and Alignment Network (SSAN) in dealing with the challenge which is firstly trained end-to-end in S-CBVR. SSAN is based on two newly proposed modules in video retrieval: (1) An efficient Self-supervised Keyframe Extraction (SKE) module to reduce redundant frame features, (2) A robust Similarity Pattern Detection (SPD) module for temporal alignment. In comparison with uniform frame extraction, SKE not only saves feature storage and search time, but also introduces comparable accuracy and limited extra computation time. In terms of temporal alignment, SPD localizes similar segments with higher accuracy and efficiency than existing deep learning methods. Furthermore, we jointly train SSAN with SKE and SPD and achieve an end-to-end improvement. Meanwhile, the two key modules SKE and SPD can also be effectively inserted into other video retrieval pipelines and gain considerable performance improvements. Experimental results on public datasets show that SSAN can obtain higher alignment accuracy while saving storage and online query computational cost compared to existing methods.Comment: Accepted by ACM MM 202

    Automated generation of movie tributes

    Get PDF
    O objetivo desta tese é gerar um tributo a um filme sob a forma de videoclip, considerando como entrada um filme e um segmento musical coerente. Um tributo é considerado um vídeo que contém os clips mais significativos de um filme, reproduzidos sequencialmente, enquanto uma música toca. Nesta proposta, os clips a constar do tributo final são o resultado da sumarização das legendas do filme com um algoritmo de sumarização genérico. É importante que o artefacto seja coerente e fluido, pelo que há a necessidade de haver um equilíbrio entre a seleção de conteúdo importante e a seleção de conteúdo que esteja em harmonia com a música. Para tal, os clips são filtrados de forma a garantir que apenas aqueles que contêm a mesma emoção da música aparecem no vídeo final. Tal é feito através da extração de vetores de características áudio relacionadas com emoções das cenas às quais os clips pertencem e da música, e, de seguida, da sua comparação por meio do cálculo de uma medida de distância. Por fim, os clips filtrados preenchem a música cronologicamente. Os resultados foram positivos: em média, os tributos produzidos obtiveram 7 pontos, numa escala de 0 a 10, em critérios como seleção de conteúdo e coerência emocional, fruto de avaliação humana.This thesis’ purpose is to generate a movie tribute in the form of a videoclip for a given movie and music. A tribute is considered to be a video containing meaningful clips from the movie playing along with a cohesive music piece. In this work, we collect the clips by summarizing the movie subtitles with a generic summarization algorithm. It is important that the artifact is coherent and fluid, hence there is the need to balance between the selection of important content and the selection of content that is in harmony with the music. To achieve so, clips are filtered so as to ensure that only those that contain the same emotion as the music are chosen to appear in the final video. This is made by extracting vectors of emotion-related audio features from the scenes they belong to and from the music, and then comparing them with a distance measure. Finally, filtered clips fill the music length in a chronological order. Results were positive: on average, the produced tributes obtained scores of 7, on a scale from 0 to 10, on content selection, and emotional coherence criteria, from human evaluation

    Information-theoretic temporal segmentation of video and applications: multiscale keyframes selection and shot boundaries detection

    Get PDF
    The first step in the analysis of video content is the partitioning of a long video sequence into short homogeneous temporal segments. The homogeneity property ensures that the segments are taken by a single camera and represent a continuous action in time and space. These segments can then be used as atomic temporal components for higher level analysis like browsing, classification, indexing and retrieval. The novelty of our approach is to use color information to partition the video into segments dynamically homogeneous using a criterion inspired by compact coding theory. We perform an information-based segmentation using a Minimum Message Length (MML) criterion and minimization by a Dynamic Programming Algorithm (DPA). We show that our method is efficient and robust to detect all types of transitions in a generic manner. A specific detector for each type of transition of interest therefore becomes unnecessary. We illustrate our technique by two applications: a multiscale keyframe selection and a generic shot boundaries detectio

    Large-scale interactive exploratory visual search

    Get PDF
    Large scale visual search has been one of the challenging issues in the era of big data. It demands techniques that are not only highly effective and efficient but also allow users conveniently express their information needs and refine their intents. In this thesis, we focus on developing an exploratory framework for large scale visual search. We also develop a number of enabling techniques in this thesis, including compact visual content representation for scalable search, near duplicate video shot detection, and action based event detection. We propose a novel scheme for extremely low bit rate visual search, which sends compressed visual words consisting of vocabulary tree histogram and descriptor orientations rather than descriptors. Compact representation of video data is achieved through identifying keyframes of a video which can also help users comprehend visual content efficiently. We propose a novel Bag-of-Importance model for static video summarization. Near duplicate detection is one of the key issues for large scale visual search, since there exist a large number nearly identical images and videos. We propose an improved near-duplicate video shot detection approach for more effective shot representation. Event detection has been one of the solutions for bridging the semantic gap in visual search. We particular focus on human action centred event detection. We propose an enhanced sparse coding scheme to model human actions. Our proposed approach is able to significantly reduce computational cost while achieving recognition accuracy highly comparable to the state-of-the-art methods. At last, we propose an integrated solution for addressing the prime challenges raised from large-scale interactive visual search. The proposed system is also one of the first attempts for exploratory visual search. It provides users more robust results to satisfy their exploring experiences

    Gesture in Automatic Discourse Processing

    Get PDF
    Computers cannot fully understand spoken language without access to the wide range of modalities that accompany speech. This thesis addresses the particularly expressive modality of hand gesture, and focuses on building structured statistical models at the intersection of speech, vision, and meaning.My approach is distinguished in two key respects. First, gestural patterns are leveraged to discover parallel structures in the meaning of the associated speech. This differs from prior work that attempted to interpret individual gestures directly, an approach that was prone to a lack of generality across speakers. Second, I present novel, structured statistical models for multimodal language processing, which enable learning about gesture in its linguistic context, rather than in the abstract.These ideas find successful application in a variety of language processing tasks: resolving ambiguous noun phrases, segmenting speech into topics, and producing keyframe summaries of spoken language. In all three cases, the addition of gestural features -- extracted automatically from video -- yields significantly improved performance over a state-of-the-art text-only alternative. This marks the first demonstration that hand gesture improves automatic discourse processing

    Multi-modal surrogates for retrieving and making sense of videos: is synchronization between the multiple modalities optimal?

    Get PDF
    Video surrogates can help people quickly make sense of the content of a video before downloading or seeking more detailed information. Visual and audio features of a video are primary information carriers and might become important components of video retrieval and video sense-making. In the past decades, most research and development efforts on video surrogates have focused on visual features of the video, and comparatively little work has been done on audio surrogates and examining their pros and cons in aiding users' retrieval and sense-making of digital videos. Even less work has been done on multi-modal surrogates, where more than one modality are employed for consuming the surrogates, for example, the audio and visual modalities. This research examined the effectiveness of a number of multi-modal surrogates, and investigated whether synchronization between the audio and visual channels is optimal. A user study was conducted to evaluate six different surrogates on a set of six recognition and inference tasks to answer two main research questions: (1) How do automatically-generated multi-modal surrogates compare to manually-generated ones in video retrieval and video sense-making? and (2) Does synchronization between multiple surrogate channels enhance or inhibit video retrieval and video sense-making? Forty-eight participants participated in the study, in which the surrogates were measured on the the time participants spent on experiencing the surrogates, the time participants spent on doing the tasks, participants' performance accuracy on the tasks, participants' confidence in their task responses, and participants' subjective ratings on the surrogates. On average, the uncoordinated surrogates were more helpful than the coordinated ones, but the manually-generated surrogates were only more helpful than the automatically-generated ones in terms of task completion time. Participants' subjective ratings were more favorable for the coordinated surrogate C2 (Magic A + V) and the uncoordinated surrogate U1 (Magic A + Storyboard V) with respect to usefulness, usability, enjoyment, and engagement. The post-session questionnaire comments demonstrated participants' preference for the coordinated surrogates, but the comments also revealed the value of having uncoordinated sensory channels
    • …
    corecore