9 research outputs found

    The Shannon-McMillan Theorem Proves Convergence to Equiprobability of Boltzmann's Microstates

    Get PDF
    The paper shows that, for large number of particles and for distinguishable and non-interacting identical particles, convergence to equiprobability of the WW microstates of the famous Boltzmann-Planck entropy formula S=klog(W)S=k \log(W) is proved by the Shannon-McMillan theorem, a cornerstone of information theory. This result further strengthens the link between information theory and statistical mechanics.Comment: 5 page

    Asymptotic Analysis of MAP Estimation via the Replica Method and Applications to Compressed Sensing

    Get PDF
    The replica method is a non-rigorous but well-known technique from statistical physics used in the asymptotic analysis of large, random, nonlinear problems. This paper applies the replica method, under the assumption of replica symmetry, to study estimators that are maximum a posteriori (MAP) under a postulated prior distribution. It is shown that with random linear measurements and Gaussian noise, the replica-symmetric prediction of the asymptotic behavior of the postulated MAP estimate of an n-dimensional vector "decouples" as n scalar postulated MAP estimators. The result is based on applying a hardening argument to the replica analysis of postulated posterior mean estimators of Tanaka and of Guo and Verdu. The replica-symmetric postulated MAP analysis can be readily applied to many estimators used in compressed sensing, including basis pursuit, lasso, linear estimation with thresholding, and zero norm-regularized estimation. In the case of lasso estimation the scalar estimator reduces to a soft-thresholding operator, and for zero norm-regularized estimation it reduces to a hard-threshold. Among other benefits, the replica method provides a computationally-tractable method for precisely predicting various performance metrics including mean-squared error and sparsity pattern recovery probability.Comment: 22 pages; added details on the replica symmetry assumptio

    Maximum entropy models in the analysis of genome-wide data in cancer research

    Get PDF
    This thesis studies the maximum entropy principle in statistical modelling. Applications are taken from the emerging field of cancer genomics. We start with a short introduction to the biology of cancer in chapter 1. In chapter 2, we discuss general principles of statistical modelling. We discuss in detail the maximum entropy principle in statistical modelling. In particular, we show that many statistical models can be put in a unified framework based on the principle of maximum entropy, which maps them into problems of statistical mechanics. In chapter 3, we consider a particular maximum entropy model, the Ising model, in the context of the inverse Ising problem. We introduce a Bethe–Peierls approximation to the inverse Ising problem. We then also suggest a modification for the mean-field approximation to work at low temperatures. The following chapters apply maximum entropy models to different problems of cancer genomics. A direct application of the inverse Ising problem to gene copy-number data of cancer cells is described in chapter 4. In chapter 5, we extend the concepts of indirect correlations and direct couplings of the inverse Ising problem to investigate the influence of gene copy-numbers on gene expressions in cancer cells. We show that the correlations in gene expression need not be due to regulatory interactions between genes. Instead, correlations in gene expression of cancer cells can be induced by the correlations in their copy-numbers, which is due to the geometrical organisation of the genome. We show that a simple maximum entropy-model can disentangle copy-number-induced correlations and the so-called “bare-correlations” in gene expression, which capture the effect of regulatory interactions alone. Chapter 6 is devoted to cancer classification. We introduce a simple semi-supervised learning algorithm to train a mixture of paramagnetic models with Ising spins to classify cancer mutation profiles. We show that, with the capability of both learning from unlabelled samples and correcting mislabelled samples, this learning algorithm outperforms both the supervised and unsupervised learning algorithms. The two appendices A and B summarise recent studies on sensitivity and resistance of cancer cells to therapy. The results of chapter 3 were published in H. C. Nguyen and J. Berg (2012a). “Bethe– Peierls approximation and the inverse Ising problem”. J. Stat. Mech. P03004; and H. C. Nguyen and J. Berg (2012b). “Mean-field theory for the inverse Ising problem at low temperatures”. Phys. Rev. Lett. 109, p. 50602. Some results of chapter 6 were published as a part of The Clinical Lung Cancer Genome Project (CLCGP) and Network Genomic Medicine (NGM) (2013). “A genomics-based classification of human lung tumors”. Science Transl. Med. 5.209, 209ra153

    Contributos para a teoria de máxima entropia na estimação de modelos mal-postos

    Get PDF
    Doutoramento em MatemáticaAs técnicas estatísticas são fundamentais em ciência e a análise de regressão linear é, quiçá, uma das metodologias mais usadas. É bem conhecido da literatura que, sob determinadas condições, a regressão linear é uma ferramenta estatística poderosíssima. Infelizmente, na prática, algumas dessas condições raramente são satisfeitas e os modelos de regressão tornam-se mal-postos, inviabilizando, assim, a aplicação dos tradicionais métodos de estimação. Este trabalho apresenta algumas contribuições para a teoria de máxima entropia na estimação de modelos mal-postos, em particular na estimação de modelos de regressão linear com pequenas amostras, afetados por colinearidade e outliers. A investigação é desenvolvida em três vertentes, nomeadamente na estimação de eficiência técnica com fronteiras de produção condicionadas a estados contingentes, na estimação do parâmetro ridge em regressão ridge e, por último, em novos desenvolvimentos na estimação com máxima entropia. Na estimação de eficiência técnica com fronteiras de produção condicionadas a estados contingentes, o trabalho desenvolvido evidencia um melhor desempenho dos estimadores de máxima entropia em relação ao estimador de máxima verosimilhança. Este bom desempenho é notório em modelos com poucas observações por estado e em modelos com um grande número de estados, os quais são comummente afetados por colinearidade. Espera-se que a utilização de estimadores de máxima entropia contribua para o tão desejado aumento de trabalho empírico com estas fronteiras de produção. Em regressão ridge o maior desafio é a estimação do parâmetro ridge. Embora existam inúmeros procedimentos disponíveis na literatura, a verdade é que não existe nenhum que supere todos os outros. Neste trabalho é proposto um novo estimador do parâmetro ridge, que combina a análise do traço ridge e a estimação com máxima entropia. Os resultados obtidos nos estudos de simulação sugerem que este novo estimador é um dos melhores procedimentos existentes na literatura para a estimação do parâmetro ridge. O estimador de máxima entropia de Leuven é baseado no método dos mínimos quadrados, na entropia de Shannon e em conceitos da eletrodinâmica quântica. Este estimador suplanta a principal crítica apontada ao estimador de máxima entropia generalizada, uma vez que prescinde dos suportes para os parâmetros e erros do modelo de regressão. Neste trabalho são apresentadas novas contribuições para a teoria de máxima entropia na estimação de modelos mal-postos, tendo por base o estimador de máxima entropia de Leuven, a teoria da informação e a regressão robusta. Os estimadores desenvolvidos revelam um bom desempenho em modelos de regressão linear com pequenas amostras, afetados por colinearidade e outliers. Por último, são apresentados alguns códigos computacionais para estimação com máxima entropia, contribuindo, deste modo, para um aumento dos escassos recursos computacionais atualmente disponíveis.Statistical techniques are essential in most areas of science being linear regression one of the most widely used. It is well-known that under fairly conditions linear regression is a powerful statistical tool. Unfortunately, some of these conditions are usually not satisfied in practice and the regression models become ill-posed, which means that the application of traditional estimation methods may lead to non-unique or highly unstable solutions. This work is mainly focused on the maximum entropy estimation of ill-posed models, in particular the estimation of regression models with small samples sizes affected by collinearity and outliers. The research is developed in three directions, namely the estimation of technical efficiency with state-contingent production frontiers, the estimation of the ridge parameter in ridge regression, and some developments in maximum entropy estimation. In the estimation of technical efficiency with state-contingent production frontiers, this work reveals that the maximum entropy estimators outperform the maximum likelihood estimator in most of the cases analyzed, namely in models with few observations in some states of nature and models with a large number of states of nature, which usually represent models affected by collinearity. The maximum entropy estimators are expected to make an important contribution to the increase of empirical work with state-contingent production frontiers. The main challenge in ridge regression is the selection of the ridge parameter. There is a huge number of methods to estimate the ridge parameter and no single method emerges in the literature as the best overall. In this work, a new method to select the ridge parameter in ridge regression is presented. The simulation study reveals that, in the case of regression models with small samples sizes affected by collinearity, the new estimator is probably one of the best ridge parameter estimators available in the literature on ridge regression. Founded on the Shannon entropy, the ordinary least squares estimator and some concepts from quantum electrodynamics, the maximum entropy Leuven estimator overcomes the main weakness of the generalized maximum entropy estimator, avoiding exogenous information that is usually not available. Based on the maximum entropy Leuven estimator, information theory and robust regression, new developments on the theory of maximum entropy estimation are provided in this work. The simulation studies and the empirical applications reveal that the new estimators are a good choice in the estimation of linear regression models with small samples sizes affected by collinearity and outliers. Finally, a contribution to the increase of computational resources on the maximum entropy estimation is also accomplished in this work
    corecore