176 research outputs found

    Space Math: Mathematics in Space Science III

    Get PDF
    This booklet contains 36 math problems that cover solar physics, space physics, radiation dosimetry, and the human impacts of space weather. The problems range from pre-algebra to calculus and span the math skills appropriate for Grade 8-12 students. The problems are taken from applications of arithmetic, graph analysis, pre-algebra, and algebra. Educational levels: Middle school, High school

    Results and applications of SiPM photodetectors from FBK-irst by the DASIPM Collaboration

    Get PDF
    Silicon Photomultipliers (SiPMs) and SiPM matrices optimized for the detection of blue light have been developed at FBK-irst. The first devices produced are composed of 625 microcells with 40 μm × 40 μm size, in a 1mm × 1mm active area. The devices have a breakdown voltage around 30 V, and a gain about 106. The DASIPM Collaboration is evaluating their performance and possible applications in high-energy physics, space physics and medical imaging. Dedicated front-end electronics are also being developed

    Heating of Heavy Ions by Interplanetary Coronal Mass Ejection (ICME) Driven Collisionless Shocks

    Full text link
    Shock heating and particle acceleration processes are some of the most fundamental physical phenomena of plasma physics with countless applications in laboratory physics, space physics, and astrophysics. This study is motivated by previous observations of non-thermal heating of heavy ions in astrophysical shocks (Korreck et al. 2004). Here, we focus on shocks driven by Interplanetary Coronal Mass Ejections (ICMEs) which heat the solar wind and accelerate particles. This study focuses specifically on the heating of heavy ions caused by these shocks. Previous studies have focused only on the two dynamically dominant species, H+ and He2+ . This study utilizes thermal properties measured by the Solar Wind Ion Composition Spectrometer (SWICS) aboard the Advanced Composition Explorer (ACE) spacecraft to examine heavy ion heating. This instrument provides data for many heavy ions not previously available for detailed study, such as Oxygen (O6+, O7+), Carbon (C5+, C6+), and Iron (Fe10+). The ion heating is found to depend critically on the upstream plasmaComment: accepted Ap

    IPS Observation System for Miyun 50m Radio Telescope and Its Acceptance Observation

    Full text link
    Ground-based observation of Interplanetary Scintillation(IPS) is an important approach of monitoring solar wind. A ground-based IPS observation system is newly implemented on 50m radio telescope, Miyun station, National Astronomical Observatories, Chinese Academy of Sciences(NAOC). This observation system is constructed for purpose of observing the solar wind speed and scintillation index by using the normalized cross-spectrum of simultaneous dual-frequency IPS measurement. The system consists of a universal dual-frequency front-end and a dual-channel multi-function back-end specially designed for IPS. After careful calibration and testing, IPS observations on source 3C273B and 3C279 are successfully carried out. The preliminary observation results show that this newly developed observation system is capable of doing IPS observation.The system sensitivity for IPS observation can reach over 0.3Jy in terms of IPS polarization correlator with 4MHz bandwidth and 2s integration time.Comment: 8 pages, 7 figure

    Effects of interplanetary transport on derived energetic particle source strengths

    Get PDF
    We study the transport of solar energetic particles (SEPs) in the inner heliosphere in order to relate observations made by an observer at 1 AU to the number and total energy content of accelerated particles at the source, assumed to be near the Sun. We use a numerical simulation that integrates the trajectories of a large number of individual particles moving in the interplanetary magnetic field. We model pitch angle scattering and adiabatic cooling of energetic ions with energies from 50 keV nucleon^(−1) to 100 MeV nucleon^(−1). Among other things, we determine the number of times that particles of a given energy cross 1 AU and the average energy loss that they suffer because of adiabatic deceleration in the solar wind. We use a number of different forms of the interplanetary spatial diffusion coefficient and a wide range of scattering mean-free paths and consider a number of different ion species in order to generate a wide range of simulation results that can be applied to individual SEP events. We apply our simulation results to observations made at 1 AU of the 20 February 2002 solar energetic particle event, finding the original energy content of several species. We find that estimates of the source energy based on SEP measurements at 1 AU are relatively insensitive to the mean-free path and scattering scheme if adiabatic cooling and multiple crossings are taken into account

    OSO-8 soft X-ray wheel experiment: Data analysis

    Get PDF
    The soft X-ray experiment hardware and its operation are described. The device included six X-ray proportional counters, two of which, numbers 1 and 4, were pressurized with on-board methane gas supplies. Number 4 developed an excessive leak rate early in the mission and was turned off on 1975 day number 282 except for brief (typically 2-hour) periods up to day 585 after which it as left off. Counter 1 worked satisfactorily until 1975 day number 1095 (January 1, 1978) at which time the on-board methane supply was depleted. The other four counters were sealed and all except number 3 worked satisfactorily throughout the mission which terminated with permanent satellie shut-down on day 1369. This was the first large area thin-window, gas-flow X-ray detector to be flown in orbit. The background problems were severe and consumed a very large portion of the data analysis effort. These background problems were associated with the Earth's trapped electron belts

    ISTP CDF Skeleton Editor

    Get PDF
    Basic Common Data Format (CDF) tools (e.g., cdfedit) provide no specific support for creating International Solar-Terrestrial Physics/Space Physics Data Facility (ISTP/SPDF) standard files. While it is possible for someone who is familiar with the ISTP/SPDF metadata guidelines to create compliant files using just the basic tools, the process is error-prone and unreasonable for someone without ISTP/SPDF expertise. The key problem is the lack of a tool with specific support for creating files that comply with the ISTP/SPDF guidelines. There are basic CDF tools such as cdfedit and skeletoncdf for creating CDF files, but these have no specific support for creating ISTP/ SPDF compliant files. The SPDF ISTP CDF skeleton editor is a cross-platform, Java-based GUI editor program that allows someone with only a basic understanding of the ISTP/SPDF guidelines to easily create compliant files. The editor is a simple graphical user interface (GUI) application for creating and editing ISTP/SPDF guideline-compliant skeleton CDF files. The SPDF ISTP CDF skeleton editor consists of the following components: A swing-based Java GUI program, JavaHelp-based manual/ tutorial, Image/Icon files, and HTML Web page for distribution. The editor is available as a traditional Java desktop application as well as a Java Network Launching Protocol (JNLP) application. Once started, it functions like a typical Java GUI file editor application for creating/editing application-unique files
    corecore