1,305 research outputs found

    Physical-Layer Security in Multiuser Visible Light Communication Networks

    Get PDF
    In this paper, we study the physical-layer security in a 3-D multiuser visible light communication (VLC) network. The locations of access points (APs) and mobile users are modeled as two 2-D, independent and homogeneous Poisson point processes at distinct heights. Using mathematical tools from stochastic geometry, we provide a new analytical framework to characterize the secrecy performance in multiuser VLC networks. Closed-form results for the outage probability and the ergodic secrecy rate are derived for networks without AP cooperation. Considering the cooperation among APs, we give tight lower and upper bounds on the secrecy outage probability and the ergodic secrecy rate. To further enhance the secrecy performance at the legitimate user, a disk-shaped secrecy protected zone is implemented in the vicinity of the transmit AP. Based on the obtained results, it is shown that cooperating neighboring APs in a multiuser VLC network can bring performance gains on the secrecy rate, but only to a limited extent. We also show that building an eavesdropper-free protected zone around the AP significantly improves the secrecy performance of legitimate users, which appears to be a promising solution for the design of multiuser VLC networks with high security requirements

    Visible Light Communication Cyber Security Vulnerabilities For Indoor And Outdoor Vehicle-To-Vehicle Communication

    Get PDF
    Light fidelity (Li-Fi), developed from the approach of Visible Light Communication (VLC), is a great replacement or complement to existing radio frequency-based (RF) networks. Li-Fi is expected to be deployed in various environments were, due to Wi-Fi congestion and health limitations, RF should not be used. Moreover, VLC can provide the future fifth generation (5G) wireless technology with higher data rates for device connectivity which will alleviate the traffic demand. 5G is playing a vital role in encouraging the modern applications. In 2023, the deployment of all the cellular networks will reach more than 5 billion users globally. As a result, the security and privacy of 5G wireless networks is an essential problem as those modern applications are in people\u27s life everywhere. VLC security is as one of the core physical-layer security (PLS) solutions for 5G networks. Due to the fact that light does not penetrate through solid objects or walls, VLC naturally has higher security and privacy for indoor wireless networks compared to RF networks. However, the broadcasting nature of VLC caused concerns, e.g., eavesdropping, have created serious attention as it is a crucial step to validate the success of VLC in wild. The aim of this thesis is to properly address the security issues of VLC and further enhance the VLC nature security. We analyzed the secrecy performance of a VLC model by studying the characteristics of the transmitter, receiver and the visible light channel. Moreover, we mitigated the security threats in the VLC model for the legitimate user, by 1) implementing more access points (APs) in a multiuser VLC network that are cooperated, 2) reducing the semi-angle of LED to help improve the directivity and secrecy and, 3) using the protected zone strategy around the AP where eavesdroppers are restricted. According to the model\u27s parameters, the results showed that the secrecy performance in the proposed indoor VLC model and the vehicle-to-vehicle (V2V) VLC outdoor model using a combination of multiple PLS techniques as beamforming, secure communication zones, and friendly jamming is enhanced. The proposed model security performance was measured with respect to the signal to noise ratio (SNR), received optical power, and bit error rate (BER) Matlab simulation results
    corecore