41 research outputs found

    High Capacity Radio over Fiber Transmission Links

    Get PDF

    Sub-THz Wireless over Fibre for Frequency Band 220 GHz- 280 GHz

    Get PDF
    Higher capacity wireless access networks are required to serve the growing demands for mobile traffic and multimedia services. The use of sub-THz carrier frequencies is a potential solution for the increased data demands. This paper proposes and demonstrates experimentally the photonic generation of a multiband signal for sub-THz wireless-over-fibre transmission at up to 100 Gb/s (20 Gb/s in each band) using the full spectrum 220 - 280 GHz for downlink wireless transmission and an uplink with 10 Gb/s on-off keying (OOK). By using an optical frequency comb generator (OFCG), 5 optical tones spaced by 15 GHz are selected and split into odd and even optical subcarriers modulated separately using 10 Gbaud quadrature phase shift keying (QPSK) with Nyquist bandwidth achieved by using root raised cosine (RRC) filtering with 0.01 roll off factor. These optical subcarriers are combined and transmitted over 10 km of fibre to the remote antenna unit (RAU). The optical bands are then filtered and transmitted separately at the RAU in a wireless channel. The received sub-THz band is down-converted to the IF frequency and digital signal processing is employed at the receiver to measure the bit error ratio (BER). The performance is also evaluated to investigate the impact of the uplink on the downlink optical transmission. The receiver link budget and wireless distance for acceptable BER are also explored. The proposed system aims to distribute sub-band THz signals for short range indoor mobile units. The overall transmission capacity is increased by transmitting it as a multiband, which also reduces the bandwidth requirements on opto-electronic devices

    Photonic Technologies for Radar and Telecomunications Systems

    Get PDF
    The growing interest in flexible architectures radio and the recent progress in the high speed digital signal processor make a software defined radio system an enabling technology for several digital signals processing architecture and for the flexible signal generation. In this direction wireless radar\telecommunications receiver with digital backend as close as possible to the antenna, as well as the software defined signal generation, reaches several benefits in term of reconfigurabilty, reliability and cost with respect to the analogical front-ends. Unfortunately the present scenario ensures direct sampling and digital downconversion only at the intermediate frequency. Therefore these kinds of systems are quite vulnerable to mismatches and hardware non-idealities in particular due to the mixers stages and filtering process. Furthermore, since the limited input bandwidth, speed and precision of the analog to digital converters represent the main digital system‘s bottleneck, today‘s direct radio frequency sampling is only possible at low frequency. On the other hand software defined signals can be generated exploiting direct digital synthesizers followed by an up-conversion to the desired carrier frequency. State-of-the-art synthesizers (limited to few GHz) introduce quantization errors due to digital-to-analog conversion, and phase errors depending on the phase stability of their internal clock. In addition the high phase stability required in modern wireless systems (such as radar systems) is becoming challenging for the electronic RF signal generation, since at high carrier frequency the frequency multiplication processes that are usually exploited reduce the phase stability of the original RF oscillators. Over the past 30 years microwave photonics (MWP) has been defined as the field that study the interactions between microwave and optical waves and their applications in radar and communications system as well as in hybrid sensor‘s instrumentation. As said before software defined radio applications drive the technological development trough high speed\bandwidth and high dynamic range systems operating directly in the radio frequency domain. Nowadays, while digital electronics represent a limit on system performances, photonic technologies perfectly engages the today‘s system needs and offers promising solution thanks to its inherent high frequency and ultrawide bandwidth. Moreover photonic components with very high phase coherence guarantees highly stable microwave carriers; while strong immunity to the electromagnetic interference, low loss and high tunability make a MWP system robust, flexible and reliable. Historical research and development of MWP finds space in a wide range of applications including the generation, distribution and processing of radio frequency signals such as, for example, analog microwave photonic link, antenna remoting, high frequency and low noise photonic microwave signal generation, photonic microwave signal processing (true time delay for phased array systems, tunable high Q microwave photonic filter and high speed analog to digital converters) and broadband wireless access networks. Performances improvement of photonic and hybrid devices represents a key factor to improve the development of microwave photonic systems in many other applications such as Terahertz generation, optical packet switching and so on. Furthermore, advanced in silicon photonics and integration, makes the low cost complete microwave photonic system on chip just around the corner. In the last years the use of photonics has been suggested as an effective way for generating low phase-noise radio frequency carriers even at high frequency. However while a lot of efforts have been spent in the photonic generation of RF carriers, only few works have been presented on reconfigurable phase coding in the photonics-based signal generators. In this direction two innovative schemes for optically generate multifrequency direct RF phase modulated signals have been presented. Then we propose a wideband ADC with high precision and a photonic wireless receiver for sparse sensing. This dissertation focuses on microwave photonics for radar and telecommunications systems. In particular applications in the field of photonic RF signal generation, photonic analog to digital converters and photonic ultrawideband radio will be presented with the main objective to overcome the limitations of pure electrical systems. Schemes and results will be further detailed and discussed. The dissertation is organized as follows. In the first chapter an overview of the MWP technologies is presented, focusing the attention of the limits overcame by using hybrid optoelectronic systems in particular field of applications. Then optoelectronic devices are introduced in the second chapter to better understand their role in a MWP system. Chapters 3,4, and 5 present results on photonic microwave signal generation, photonic wideband analog to digital converters and photonic ultrawideband up\down converter for both radar and telecommunications applications. Finally in the chapter 6 an overview of the photonic radar prototype is given

    RF Photonic Vector Modulation and Demodulation Techniques for Millimeter-Wave Communications

    Get PDF
    RF photonic techniques for modulating and demodulating microwave and millimeter-wave signals on RF carriers are theoretically analyzed and experimentally demonstrated. The two demodulating configurations utilize cascaded electrooptic phase-modulation followed by optical filtering. The spurious free dynamic ranges of these configurations are measured and a technique to intrinsically linearize the latter system to fifth-order is experimentally confirmed. Measurements are then performed at frequencies between 7 and 70 GHz that verify RF photonic based downconversion using a harmonic of the electrical local oscillator (LO). Furthermore, this architecture is extended to allow for vector demodulation of digitally-encoded signals. Results of RF photonic demodulation of 4-quadrature amplitude modulation (QAM) and 16-QAM RF encoded millimeter-wave signals are presented. Two RF photonic techniques for generating and encoding millimeter-wave RF signals are analyzed and experimentally demonstrated. The first uses phase-modulation and optical filtering in an interferometric configuration. Phase-shift keyed encoded microwave and millimeter-wave signals are electrooptically synthesized using a harmonic of the electrical LO at data-rates of up to 6 Gbps and frequencies of up to 40 GHz. A second RF photonic scheme is developed to allow for vector modulation and upconversion using dual-drive Mach-Zehnder modulators. Vector modulation and upconversion are then shown at harmonics of the LO up to the fourth-order and at frequencies up to 60 GHz. Moreover, generation of 2.488 Gbps 4-QAM signals on a 36 GHz carrier using the second harmonic of the LO are demonstrated with this approach. Wired and wireless microwave and millimeter-wave transmission experiments are successfully conducted with the RF photonic systems detailed above in a laboratory environment

    Photonic and Electronic Co-integration for Millimetre-Wave Hybrid Photonic-Wireless Links

    Get PDF

    Photonic and Electronic Co-integration for Millimetre-Wave Hybrid Photonic-Wireless Links

    Get PDF

    Photonic techniques for indoor spatially-multiplexed wireless communication

    Get PDF
    corecore