20,752 research outputs found
Absolute photoionization cross section measurements of the Kr I-isoelectronic sequence
Photoionization spectra have been recorded in the 4s, 4p and 3d resonance regions for the Kr Iisoelectronic sequence using both the dual laser produced plasma technique (at DCU) to produce photoabsorption spectra, and the merged ion beam and synchrotron radiation technique (at ASTRID) to measure absolute photoionization cross sections. Profile parameters are compared for the 4s − np resonances of Rb+ and Sr2+. Many new 4p " ns, md transitions are identified with the aid of Hartree-Fock calculations, and consistent quantum defects are observed for the various ns and md Rydberg series. Absolute single and double photoionization cross sections recorded in the 3d region for Rb+ and Sr2+ ions show preferential decay via double photoionization. This is only the second report where both the DLP technique and the merged beam technique have been used simultaneously to record photoionization spectra, and the advantages of both techniques (i.e. better resolution in the case of DLP and values for absolute photoionization cross sections in the case of the merged beam technique) are highlighted
Recommended from our members
To Be or Not To Be a Molecular Ion: The Role of the Solvent in Photoionization of Arginine.
Application of photoionization mass spectroscopy, a technique capable of assessing protonation states in complex molecules in the gas phase, is challenging for arginine due to its fragility. We report photoionization efficiencies in the valence region of aqueous aerosol particles produced from arginine solutions under various pH and vaporization conditions. By using ab initio calculations, we investigate the stability of different conformers. Our results show that neutral arginine fragments upon ionization in the gas phase but solvation stabilizes the molecular ion, resulting in different photoionization dynamics. We also report the valence-band photoelectron spectra of the aerosol solutions obtained at different pH values
Study of attosecond delays using perturbation diagrams and exterior complex scaling
We describe in detail how attosecond delays in laser-assisted photoionization
can be computed using perturbation theory based on two-photon matrix elements.
Special emphasis is laid on above-threshold ionization, where the electron
interacts with an infrared field after photoionization by an extreme
ultraviolet field. Correlation effects are introduced using diagrammatic
many-body theory to the level of the random-phase approximation with exchange
(RPAE). Our aim is to provide an ab initio route to correlated multi-photon
processes that are required for an accurate description of experiments on the
attosecond time scale. Here, our results are focused on photoionization of the
M -shell of argon atoms, where experiments have been carried out using the
so-called RABITT technique. An influence of autoionizing resonances in
attosecond delay measurements is observed. Further, it is shown that the delay
depends on both detection angle of the photoelectron and energy of the probe
photon.Comment: 36 pages, 10 figure
Bright Source of Cold Ions for Surface-Electrode Traps
We produce large numbers of low-energy ions by photoionization of
laser-cooled atoms inside a surface-electrode-based Paul trap. The
isotope-selective trap loading rate of Yb ions/s exceeds
that attained by photoionization (electron impact ionization) of an atomic beam
by four (six) orders of magnitude. Traps as shallow as 0.13 eV are easily
loaded with this technique. The ions are confined in the same spatial region as
the laser-cooled atoms, which will allow the experimental investigation of
interactions between cold ions and cold atoms or Bose-Einstein condensates.Comment: Paper submitted to PRL for review on 2/1/0
Efficient Photoionization-Loading of Trapped Cadmium Ions with Ultrafast Pulses
Atomic cadmium ions are loaded into radiofrequency ion traps by
photoionization of atoms in a cadmium vapor with ultrafast laser pulses. The
photoionization is driven through an intermediate atomic resonance with a
frequency-quadrupled mode-locked Ti:Sapphire laser that produces pulses of
either 100 fsec or 1 psec duration at a central wavelength of 229 nm. The large
bandwidth of the pulses photoionizes all velocity classes of the Cd vapor,
resulting in high loading efficiencies compared to previous ion trap loading
techniques. Measured loading rates are compared with a simple theoretical
model, and we conclude that this technique can potentially ionize every atom
traversing the laser beam within the trapping volume. This may allow the
operation of ion traps with lower levels of background pressures and less trap
electrode surface contamination. The technique and laser system reported here
should be applicable to loading most laser-cooled ion species.Comment: 11 pages, 12 figure
Attosecond time delay in the photoionization of Mn in the region of the giant resonance
The initial insight into time delay in Mn photoionization in the region of
the giant autoionization resonance is gained in the framework of
the "spin-polarized" random phase approximation with exchange. The dramatic
effect of the giant autoionization resonance on time delay of photoemission
from the and valence subshells of the Mn atom is unraveled. Strong
sensitivity of the time delay of the photoemission to the final-state term
of the ion-remainder [ vs.~] is discovered. It is shown that photoionization time
delay in the autoionizing resonance region is explicitly associated with the
resonance lifetime, which can, thus, be directly measured in attosecond time
delay experiments. Similar features are expected to emerge in photoionization
time delays of other transition-metal and rare-earth atoms with half-filed
subshells that possess giant autoionization resonances as well.Comment: 8 pages, 4 figures, 49 reference
Photoabsorption in formaldehyde: Intensities and assignments in the discrete and continuous spectral intervals
Theoretical investigations of total and partial‐channel photoabsorption cross sections in molecular formaldehyde are reported employing the Stieltjes–Tchebycheff (S–T) technique and separated‐channel static‐exchange (IVO) calculations. Vertical one‐electron dipole spectra for the 2b_2(n), 1b_1(π), 5a_1(σ), 1b_2, and 4a_1 canonical molecular orbitals are obtained using Hartree–Fock frozen‐core functions and large basis sets of compact and diffuse normalizable Gaussians to describe the photoexcited and ejected electrons. The calculated discrete excitation spectra provide reliable zeroth‐order approximations to both valence and Rydberg transitions, and, in particular, the 2b_2(n) →nsa_1, npa_1, npb_2, and nda_2 IVO spectra are in excellent accord with recent experimental assignments and available intensity measurements. Convergent (S–T) photoionization cross sections in the static‐exchange (IVO) approximation are obtained for the 15 individual partial channels associated with ionization of the five occupied molecular orbitals considered. Resonance features in many of the individual‐channel photoionization cross sections are attributed to contributions from valencelike a_1σ^∗ (CO), a_1σ^∗ (CH), and b_2σ^∗ (CH)/π_y^∗ (CO) molecular orbitals that appear in the photoionization continua, rather than in the corresponding one‐electron discrete spectral intervals. The vertical electronic cross sections for ^1A_1→^1B_1, ^1B_2, and ^1A_1 excitations are in generally good accord with previously reported CI (S–T) predictions of continuum orbital assignments and intensities, although some discrepancies due to basis‐set differences are present in the ^1B_1 and ^1B_2 components, and larger discrepancies apparently due to channel coupling are present in the ^1A_1→^1A_1 cross section. Partial‐channel vertical electronic cross sections for the production of the five lowest parent‐ion electronic states are found to be in general agreement with the results of very recent synchrotron‐radiation photoelectron branching‐ratio measurements in the 20 to 30 eV excitation energy interval. Most important in this connection is the tentative verification of the predicted orderings in intensities of the partial‐ channel cross sections, providing support for the presence of a strong ka_1σ^∗ (CO) resonance in the (5a_1^(−1))^2A_1 channel. Finally, the total vertical electronic cross sections for absorption and ionization are in general accord with photoabsorption measurements, photoionization–mass–spectrometric studies, and the previously reported CI (S–T) calculations. Although further refined calculations including vibrational degrees of freedom and autoionization line shapes are required for a more precise quantitative comparison between theory and experiment, the present study should provide a reliable zeroth‐order account of discrete and continuum electronic dipole excitations in molecular formaldehyde
VUV/EUV ionising radiation and atoms and ions: dual laser plasma investigations
The interaction of ionising radiation with atoms and ions is a key fundamental process. This report concentrates on studies of photoexcitation/photoionisation using laser-produced plasmas as continuum sources and synchronised laser plasma plumes to provide the absorbing atom or ion species. Examples from studies of the interaction of ionising radiation with atoms and ions ranging from few-electron atomic and ionic systems to the many-electron high atomic number actinides are reviewed and illustrate the advantages and limitations of the Dual Laser Plasma technique
K-shell photoionization of ground-state Li-like boron ions [B]: Experiment and Theory
Absolute cross sections for the K-shell photoionization of ground-state
Li-like boron [B(1s2s S)] ions were measured by employing the
ion-photon merged-beams technique at the Advanced Light Source synchrotron
radiation facility. The energy ranges 197.5--200.5 eV, 201.9--202.1 eV of the
[1s(2s\,2p)P]P and [1s(2s\,2p)P] P
resonances, respectively, were investigated using resolving powers of up to
17\,600. The energy range of the experiments was extended to about 238.2 eV
yielding energies of the most prominent
[1s(2\,n)]P resonances with an absolute accuracy
of the order of 130 ppm. The natural linewidths of the [1s(2s\,2p)P]
P and [1s(2s\,2p)P] P resonances were measured
to be meV and meV, respectively, which compare
favourably with theoretical results of 4.40 meV and 30.53 meV determined using
an intermediate coupling R-matrix method.Comment: 6 figures and 2 table
- …
