65,491 research outputs found
Detoxification of water by semiconductor photocatalysis
An overview of the use of semiconductor photocatalysis for water purification is given. The basic principles of semiconductor photocatalysis are described along with the current understanding of the underlying reaction mechanism(s) and how it fits in with the major features of the observed Langmuir-Hinshelwood-type kinetics of pollutant destruction. These features are illustrated based on literature on the destruction of aqueous solutions of 4-chlorophenol as a pollutant, using titanium dioxide as the photocatalyst. The range of organic and inorganic pollutants that can be destroyed by semiconductor photocatalysis are reported and discussed. The basic considerations that need to be made when designing a reactor for semiconductor photocatalysis are considered. These include: the nature of the reactor glass, the type of illumination source, and the nature and type of semiconductor photocatalyst. The key basic photoreactor designs are reported and discussed, including external illumination, annular, and circular photoreactors. Actual designs that have been used for fixed and thin falling film semiconductor photocatalyst reactors are illustrated and their different features discussed. Basic non-concentrating and concentrating solar photoreactors for semiconductor photocatalysis are also reported. The design features of the major commercial photocatalytic reactor systems for water purification are reported and illustrated. Several case studies involving commercial photocatalytic reactors for water purification are reported. An attempt is made briefly to compare the efficacy of semiconductor photocatalysis for water purification with that of other, more popular and prevalent water purification processes. The future of semiconductor photocatalysis as a method of purifying water is considered
Synthesis of titanate nanofibers co-sensitized with ZnS and Bi2S3 nanocrystallites and their application on pollutants removal
The synthesis of nanocomposite materials combining titanate nanofibers (TNF)
with nanocrystalline ZnS and Bi2S3 semiconductors is described in this work.
The TNF were produced via hydrothermal synthesis and sensitized with the
semiconductor nanoparticles, through a single-source precursor decomposition
method. ZnS and Bi2S3 nanoparticles were successfully grown onto the TNF's
surface and Bi2S3-ZnS/TNF nanocomposite materials with different layouts were
obtained using either a layer-by-layer or a co-sensitization approach. The
samples' photocatalytic performance was first evaluated through the production
of the hydroxyl radical using terephthalic acid as probe molecule. All the
tested samples show photocatalytic ability for the production of this oxidizing
species. Afterwards, the samples were investigated for the removal of methylene
blue. The nanocomposite materials with best adsorption ability for the organic
dye were the ZnS/TNF and Bi2S3ZnS/TNF. The removal of the methylene blue was
systematically studied, and the most promising results were obtained
considering a sequential combination of an adsorption-photocatalytic
degradation process using the Bi2S3ZnS/TNF powder as a highly adsorbent and
photocatalyst material.Comment: 26 pages, 10 figure
Simultaneous removal of estrogens and pathogens from secondary treated wastewater by solar photocatalytic treatment
Comparison of the effectiveness of chlorine, ozone, and photocatalytic disinfection in reducing the risk of antibiotic resistance pollution
Effectiveness of conventional chlorine and ozone disinfection on reduction of antibiotic resistance was compared with less commonly applied heterogeneous photocatalytic process. For this purpose plasmid DNA isolated from a multi-resistant Escherichia coli (E. coli) HB101 was treated in two different concentrations with the three oxidation processes. Oxidative damage on the plasmid DNA was analyzed with gel electrophoresis by comparing the extent of conformational changes in the DNA structure. The effectiveness of the applied oxidant in reducing the risk of resistance transfer was also evaluated by comparing the ability of treated plasmid DNA to transform competent cells. Chlorine did not affect plasmid DNA structure at the studied doses, while ozone and photocatalytic treatment resulted in conformational changes and the damage increased with increasing oxidant doses. Transformation experiments confirmed a similar trend. Chlorine did not affect the transformability and the cell counts of competent cells transformed with chlorine treated plasmid DNA were similar to those transformed by non-treated plasmid DNA in the control experiments
Photocatalytic Decomposition of Phenol under Visible and UV Light Utilizing Titanium Dioxide Based Catalysts
Pollution in wastewater effluvia from phenol and phenolic compounds is a common occurrence in many industrial manufacturing plants. Phenol is toxic to human beings as well as a contaminant to the environment, meanwhile, it is difficult to remove from wastewater due to its non-biodegradable nature. To boost the rate of decomposition, various catalytic approaches have been developed. With the interest of decreasing operation cost, titanium dioxide (TiO2) based catalysts have emerged as good candidates for the photocatalytic process.
In this honors project, a series of TiO2 based catalysts, including TiO2, N-TiO2, Cu-TiO2, and Cu-N-TiO2, were utilized to study the decomposition of phenol. Each catalyst was studied under the visible light (589nm) and UV light (385nm) conditions. The UV-Vis spectrophotometer was used to evaluate the catalytic performance. The results revealed that the addition of nitrogen improved the decomposition rate of phenol compared with that of TiO2 itself. Copper did not show improved photocatalysis and requires further investigation
Chemical vapor deposition of TiO2 for photocatalytic applications and biocidal surfaces
Through a few examples, we present a short review on properties and applications of TiO2 films deposited by various CVD processes. The constraints due to the growth process make difficult optimization of properties that were correlated with microstructures. We focus on the photocatalytic activity in the visible range and on the antibacterial behavior of these functional thin layers
Dichloromethylation of enones by carbon nitride photocatalysis
Small organic radicals are ubiquitous intermediates in photocatalysis and are used in organic synthesis to install functional groups and to tune electronic properties and pharmacokinetic parameters of the final molecule. Development of new methods to generate small organic radicals with added functionality can further extend the utility of photocatalysis for synthetic needs. Herein, we present a method to generate dichloromethyl radicals from chloroform using a heterogeneous potassium poly(heptazine imide) (K-PHI) photocatalyst under visible light irradiation for C1-extension of the enone backbone. The method is applied on 15 enones, with γ,γ-dichloroketones yields of 18–89%. Due to negative zeta-potential (−40 mV) and small particle size (100 nm) K-PHI suspension is used in quasi-homogeneous flow-photoreactor increasing the productivity by 19 times compared to the batch approach. The resulting γ,γ-dichloroketones, are used as bifunctional building blocks to access value-added organic compounds such as substituted furans and pyrroles
TiO2 Nanocrystals Grown on Graphene as Advanced Photocatalytic Hybrid Materials
Graphene/TiO2 nanocrystals hybrid is successfully prepared by directly
growing TiO2 nanocrystals on graphene oxide (GO) sheets. The direct growth of
nanocrystals on GO sheets was achieved by a two-step method, in which TiO2 was
coated on GO sheets by hydrolysis first and crystallized into anatase
nanocrystals by hydrothermal treatment in second step. Slow hydrolysis reaction
through the use of EtOH/H2O mixed solvents and addition of H2SO4 allows the
selectively growing TiO2 on GO and suppressing free growth in solution. The
method offers easy access to the GO/TiO2 nanocrystals hybrid with well
controlled coating and strong interactions between TiO2 and the underlying GO
sheets. The strong coupling could lead to advanced hybrid materials for various
applications including photocatalysis. The prepared graphene/TiO2 nanocrystals
hybrid has demonstrated superior photocatalytic activity in degradation of
rhodamine B over other TiO2 materials, showing an impressive 3-fold
photocatalytic enhancement over P25. It is expected that the hybrid material
could also be promising for various other applications including lithium ion
battery where strong electrical coupling to TiO2 nanoparticles is essential.Comment: Nano Research, in pres
Sequential biological and photocatalysis based treatments for shipboard slop purification: A pilot plant investigation
This study investigated the treatment of a shipboard slop containing commercial gasoline in a pilot plant scale consisting of a membrane biological reactor (MBR) and photocatalytic reactor (PCR) acting in series. The MBR contributed for approximately 70% to the overall slop purification. More precisely, the biological process was able to remove approximately 40%, on average, of the organic pollution in the slop. Nevertheless, the membrane was capable to retain a large amount of organic molecules within the system, amounting for a further 30% of the influent total organic content removal. However, this affected the membrane fouling, thus resulting in the increase of the pore blocking mechanism that accounted for approximately 20% to the total resistance to filtration (2.85∙10 13 m −1 ), even if a significant restoration of the original membrane permeability was obtained after chemical cleanings. On the other hand, the biological treatment produced a clear solution for the photocatalytic system, thereby optimizing the light penetration and generation of highly oxidizing active oxygen species that enabled the degradation of bio-recalcitrant compounds. Indeed, low total organic carbon (TOC) values (<10 mg L −1 ) were achieved in the output of the photocatalytic reactor by means of only 60 Einstein (E) of cumulative impinging energy after the addition of K 2 S 2 O 8 . Overall, coupling the two processes enabled very high TOC removal (ca. 95%)
- …
