724 research outputs found

    Contour Generator Points for Threshold Selection and a Novel Photo-Consistency Measure for Space Carving

    Full text link
    Space carving has emerged as a powerful method for multiview scene reconstruction. Although a wide variety of methods have been proposed, the quality of the reconstruction remains highly-dependent on the photometric consistency measure, and the threshold used to carve away voxels. In this paper, we present a novel photo-consistency measure that is motivated by a multiset variant of the chamfer distance. The new measure is robust to high amounts of within-view color variance and also takes into account the projection angles of back-projected pixels. Another critical issue in space carving is the selection of the photo-consistency threshold used to determine what surface voxels are kept or carved away. In this paper, a reliable threshold selection technique is proposed that examines the photo-consistency values at contour generator points. Contour generators are points that lie on both the surface of the object and the visual hull. To determine the threshold, a percentile ranking of the photo-consistency values of these generator points is used. This improved technique is applicable to a wide variety of photo-consistency measures, including the new measure presented in this paper. Also presented in this paper is a method to choose between photo-consistency measures, and voxel array resolutions prior to carving using receiver operating characteristic (ROC) curves

    Ray Conditioning: Trading Photo-consistency for Photo-realism in Multi-view Image Generation

    Full text link
    Multi-view image generation attracts particular attention these days due to its promising 3D-related applications, e.g., image viewpoint editing. Most existing methods follow a paradigm where a 3D representation is first synthesized, and then rendered into 2D images to ensure photo-consistency across viewpoints. However, such explicit bias for photo-consistency sacrifices photo-realism, causing geometry artifacts and loss of fine-scale details when these methods are applied to edit real images. To address this issue, we propose ray conditioning, a geometry-free alternative that relaxes the photo-consistency constraint. Our method generates multi-view images by conditioning a 2D GAN on a light field prior. With explicit viewpoint control, state-of-the-art photo-realism and identity consistency, our method is particularly suited for the viewpoint editing task.Comment: Project page at https://ray-cond.github.io

    Computing surface-based photo-consistency on graphics hardware

    Get PDF
    © Copyright 2005 IEEEThis paper describes a novel approach to the problem of recovering information from an image set by comparing the radiance of hypothesised point correspondences. Our algorithm is applicable to a number of problems in computer vision, but is explained particularly in terms of recovering geometry from an image set. It uses the idea of photo-consistency to measure the confidence that a hypothesised scene description generated the reference images. Photo-consistency has been used in volumetric scene reconstruction where a hypothesised surface is evolved by considering one voxel at a time. Our approach is different: it represents the scene as a parameterised surface so decisions can be made about its photo-consistency simultaneously over the entire surface rather than a series of independent decisions. Our approach is further characterised by its ability to execute on graphics hardware. Experiments demonstrate that our cost function minimises at the solution and is not adversely affected by occlusion

    TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo

    Get PDF
    One of the most successful approaches in Multi-View Stereo estimates a depth map and a normal map for each view via PatchMatch-based optimization and fuses them into a consistent 3D points cloud. This approach relies on photo-consistency to evaluate the goodness of a depth estimate. It generally produces very accurate results; however, the reconstructed model often lacks completeness, especially in correspondence of broad untextured areas where the photo-consistency metrics are unreliable. Assuming the untextured areas piecewise planar, in this paper we generate novel PatchMatch hypotheses so to expand reliable depth estimates in neighboring untextured regions. At the same time, we modify the photo-consistency measure such to favor standard or novel PatchMatch depth hypotheses depending on the textureness of the considered area. We also propose a depth refinement step to filter wrong estimates and to fill the gaps on both the depth maps and normal maps while preserving the discontinuities. The effectiveness of our new methods has been tested against several state of the art algorithms in the publicly available ETH3D dataset containing a wide variety of high and low-resolution images

    Methods for Volumetric Reconstruction of Visual Scenes

    Get PDF
    In this paper, we present methods for 3D volumetric reconstruction of visual scenes photographed by multiple calibrated cameras placed at arbitrary viewpoints. Our goal is to generate a 3D model that can be rendered to synthesize new photo-realistic views of the scene. We improve upon existing voxel coloring/space carving approaches by introducing new ways to compute visibility and photo-consistency, as well as model infinitely large scenes. In particular, we describe a visibility approach that uses all possible color information from the photographs during reconstruction, photo-consistency measures that are more robust and/or require less manual intervention, and a volumetric warping method for application of these reconstruction methods to large-scale scenes

    General Dynamic Scene Reconstruction from Multiple View Video

    Get PDF
    This paper introduces a general approach to dynamic scene reconstruction from multiple moving cameras without prior knowledge or limiting constraints on the scene structure, appearance, or illumination. Existing techniques for dynamic scene reconstruction from multiple wide-baseline camera views primarily focus on accurate reconstruction in controlled environments, where the cameras are fixed and calibrated and background is known. These approaches are not robust for general dynamic scenes captured with sparse moving cameras. Previous approaches for outdoor dynamic scene reconstruction assume prior knowledge of the static background appearance and structure. The primary contributions of this paper are twofold: an automatic method for initial coarse dynamic scene segmentation and reconstruction without prior knowledge of background appearance or structure; and a general robust approach for joint segmentation refinement and dense reconstruction of dynamic scenes from multiple wide-baseline static or moving cameras. Evaluation is performed on a variety of indoor and outdoor scenes with cluttered backgrounds and multiple dynamic non-rigid objects such as people. Comparison with state-of-the-art approaches demonstrates improved accuracy in both multiple view segmentation and dense reconstruction. The proposed approach also eliminates the requirement for prior knowledge of scene structure and appearance

    Multiview stereo via volumetric graph-cuts and occlusion robust photo-consistency

    Get PDF
    This paper presents a volumetric formulation for the multiview stereo problem which is amenable to a computationally tractable global optimization using Graph-cuts. Our approach is to seek the optimal partitioning of 3D space into two regions labeled as "object" and "empty" under a cost functional consisting of the following two terms: 1) A term that forces the boundary between the two regions to pass through photo-consistent locations; and 2) a ballooning term that inflates the "object" region. To take account of the effect of occlusion on the first term, we use an occlusion robust photo-consistency metric based on normalized cross correlation, which does not assume any geometric knowledge about the reconstructed object. The globally optimal 3D partitioning can be obtained as the minimum cut solution of a weighted graph

    Semantically Informed Multiview Surface Refinement

    Full text link
    We present a method to jointly refine the geometry and semantic segmentation of 3D surface meshes. Our method alternates between updating the shape and the semantic labels. In the geometry refinement step, the mesh is deformed with variational energy minimization, such that it simultaneously maximizes photo-consistency and the compatibility of the semantic segmentations across a set of calibrated images. Label-specific shape priors account for interactions between the geometry and the semantic labels in 3D. In the semantic segmentation step, the labels on the mesh are updated with MRF inference, such that they are compatible with the semantic segmentations in the input images. Also, this step includes prior assumptions about the surface shape of different semantic classes. The priors induce a tight coupling, where semantic information influences the shape update and vice versa. Specifically, we introduce priors that favor (i) adaptive smoothing, depending on the class label; (ii) straightness of class boundaries; and (iii) semantic labels that are consistent with the surface orientation. The novel mesh-based reconstruction is evaluated in a series of experiments with real and synthetic data. We compare both to state-of-the-art, voxel-based semantic 3D reconstruction, and to purely geometric mesh refinement, and demonstrate that the proposed scheme yields improved 3D geometry as well as an improved semantic segmentation
    corecore