1 research outputs found

    Multi-scale gapped smoothing algorithm for robust baseline-free damage detection in optical infrared thermography

    Get PDF
    Flash thermography is a promising technique to perform rapid non-destructive testing of composite materials. However, it is well known that several difficulties are inherently paired with this approach, such as non-uniform heating, measurement noise and lateral heat diffusion effects. Hence, advanced signal-processing techniques are indispensable in order to analyze the recorded dataset. One such processing technique is Gapped Smoothing Algorithm, which predicts a gapped pixel’s value in its sound state from a measurement in the defected state by evaluating only its neighboring pixels. However, the standard Gapped Smoothing Algorithm uses a fixed spatial gap size, which induces issues to detect variable defect sizes in a noisy dataset. In this paper, a Multi-Scale Gapped Smoothing Algorithm (MSGSA) is introduced as a baseline-free image processing technique and an extension to the standard Gapped Smoothing Algorithm. The MSGSA makes use of the evaluation of a wide range of spatial gap sizes so that defects of highly different dimensions are identified. Moreover, it is shown that a weighted combination of all assessed spatial gap sizes significantly improves the detectability of defects and results in an (almost) zero-reference background. The technique thus effectively suppresses the measurement noise and excitation non-uniformity. The efficiency of the MSGSA technique is evaluated and confirmed through numerical simulation and an experimental procedure of flash thermography on carbon fiber reinforced polymers with various defect sizes
    corecore