4,462 research outputs found
Index to NASA Tech Briefs, January - June 1966
Index to NASA technological innovations for January-June 196
Improved protection system for phase faults on marine vessels based on ratio between negative-sequence and positive-sequence of the fault current
This paper presents a new method to protect the radial feeders on marine vessels. The proposed protection method is effective against Phase-Phase (PP) faults and is based on evaluation of the ratio between the negative-sequence and positive-sequence of the fault currents. It is shown that the magnitude of the introduced ratio increases significantly during the PP fault, hence indicating the fault presence in an electric network. In this paper, the theoretical background of the new method of protection is firstly discussed, based on which the new protection algorithm is described afterwards. The proposed algorithm is implemented in a programmable digital relay embedded in a Hardware-in-the-Loop (HIL) test setup that emulates a typical maritime feeder using a Real Time Digital Simulator (RTDS). The HIL setup allows testing of the new protection method under a wide range of faults and network conditions and the experimental results demonstrate its effectiveness in all scenarios conducted. The proposed protection method offers a solution to the protection challenges associated with variability of the short-circuit currents in radial feeders, advancing in this way the traditional mean of protection in maritime feeders, represented by OverCurrent (OC) relays
Effect of water on electrical properties of Refined, Bleached, and Deodorized Palm Oil (RBDPO) as electrical insulating material
This paper describes the properties of refined, bleached, deodorized palm oil (RBDPO) as having the potential to be used as insulating liquid. There are several important properties such as electrical breakdown, dielectric dissipation factor, specific gravity, flash point, viscosity and pour point of RBDPO that was measured and compared to commercial mineral oil which is largely in current use as insulating liquid in power transformers. Experimental results of the electrical properties revealed that the average breakdown voltage of the RBDPO sample, without the addition of water at room temperature, is 13.368 kV. The result also revealed that due to effect of water, the breakdown voltage is lower than that of commercial mineral oil (Hyrax). However, the flash point and the pour point of RBDPO is very high compared to mineral oil thus giving it advantageous possibility to be used safely as insulating liquid. The results showed that RBDPO is greatly influenced by water, causing the breakdown voltage to decrease and the dissipation factor to increase; this is attributable to the high amounts of dissolved water
Comparison between unipolar and bipolar single phase grid-connected inverters for PV applications
An inverter is essential for the interfacing of photovoltaic panels with the AC network. There are many possible inverter topologies and inverter switching schemes and each one will have its own relative advantages and disadvantages. Efficiency and output current distortion are two important factors governing the choice of inverter system. In this paper, it is argued that current controlled inverters offer significant advantages from the point of view of minimisation of current distortion. Two inverter switching strategies are explored in detail. These are the unipolar current controlled inverter and the bipolar current controlled inverter. With respect to low frequency distortion, previously published works provide theoretical arguments in favour of bipolar switching. On the other hand it has also been argued that the unipolar switched inverter offers reduced switching losses and generates less EMI. On efficiency grounds, it appears that the unipolar switched inverter has an advantage. However, experimental results presented in this paper show that the level of low frequency current distortion in the unipolar switched inverter is such that it can only comply with Australian Standard 4777.2 above a minimum output current. On the other hand it is shown that at the same current levels bipolar switching results in reduced low frequency harmonics
Comparison between unipolar and bipolar single phase grid-connected inverters for PV applications
An inverter is essential for the interfacing of photovoltaic panels with the AC network. There are many possible inverter topologies and inverter switching schemes and each one will have its own relative advantages and disadvantages. Efficiency and output current distortion are two important factors governing the choice of inverter system. In this paper, it is argued that current controlled inverters offer significant advantages from the point of view of minimisation of current distortion. Two inverter switching strategies are explored in detail. These are the unipolar current controlled inverter and the bipolar current controlled inverter. With respect to low frequency distortion, previously published works provide theoretical arguments in favour of bipolar switching. On the other hand it has also been argued that the unipolar switched inverter offers reduced switching losses and generates less EMI. On efficiency grounds, it appears that the unipolar switched inverter has an advantage. However, experimental results presented in this paper show that the level of low frequency current distortion in the unipolar switched inverter is such that it can only comply with Australian Standard 4777.2 above a minimum output current. On the other hand it is shown that at the same current levels bipolar switching results in reduced low frequency harmonics
Aircraft electromagnetic compatibility
Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting
The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles
In the G0 experiment, performed at Jefferson Lab, the parity-violating
elastic scattering of electrons from protons and quasi-elastic scattering from
deuterons is measured in order to determine the neutral weak currents of the
nucleon. Asymmetries as small as 1 part per million in the scattering of a
polarized electron beam are determined using a dedicated apparatus. It consists
of specialized beam-monitoring and control systems, a cryogenic hydrogen (or
deuterium) target, and a superconducting, toroidal magnetic spectrometer
equipped with plastic scintillation and aerogel Cerenkov detectors, as well as
fast readout electronics for the measurement of individual events. The overall
design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method
The 30-cm ion thruster power processor
A power processor unit for powering and controlling the 30 cm Mercury Electron-Bombardment Ion Thruster was designed, fabricated, and tested. The unit uses a unique and highly efficient transistor bridge inverter power stage in its implementation. The system operated from a 200 to 400 V dc input power bus, provides 12 independently controllable and closely regulated dc power outputs, and has an overall power conditioning capacity of 3.5 kW. Protective circuitry was incorporated as an integral part of the design to assure failure-free operation during transient and steady-state load faults. The implemented unit demonstrated an electrical efficiency between 91.5 and 91.9 at its nominal rated load over the 200 to 400 V dc input bus range
Scientific divers quantify first known outbreaks of cold-water coral disease
Coral diseases are widely reported in the tropics but the first incidence of cold-water coral disease was not noted until 2002 when divers recorded an outbreak at 10-28 m depth off Lundy in a NE Atlantic marine protected area. The seafan Eunicella verrucosa exhibited coenchyme necrosis and subsequent diving surveys of \u3e600 colonies at 13 sites since revealed that disease outbreaks were widespread in SW England to depths of 50 m from 2003-2008, possibly caused by infection by Vibrio bacteria at high temperatures
LASER Tech Briefs, September 1993
This edition of LASER Tech briefs contains a feature on photonics. The other topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, Life Sciences and books and reports
- …
