21,805 research outputs found

    Covariate conscious approach for Gait recognition based upon Zernike moment invariants

    Full text link
    Gait recognition i.e. identification of an individual from his/her walking pattern is an emerging field. While existing gait recognition techniques perform satisfactorily in normal walking conditions, there performance tend to suffer drastically with variations in clothing and carrying conditions. In this work, we propose a novel covariate cognizant framework to deal with the presence of such covariates. We describe gait motion by forming a single 2D spatio-temporal template from video sequence, called Average Energy Silhouette image (AESI). Zernike moment invariants (ZMIs) are then computed to screen the parts of AESI infected with covariates. Following this, features are extracted from Spatial Distribution of Oriented Gradients (SDOGs) and novel Mean of Directional Pixels (MDPs) methods. The obtained features are fused together to form the final well-endowed feature set. Experimental evaluation of the proposed framework on three publicly available datasets i.e. CASIA dataset B, OU-ISIR Treadmill dataset B and USF Human-ID challenge dataset with recently published gait recognition approaches, prove its superior performance.Comment: 11 page

    The role of human body movements in mate selection

    Get PDF
    It is common scientific knowledge, that most of what we say within a conversation is not only expressed by the words meaning alone, but also through our gestures, postures, and body movements. This non-verbal mode is possibly rooted firmly in our human evolutionary heritage, and as such, some scientists argue that it serves as a fundamental assessment and expression tool for our inner qualities. Studies of nonverbal communication have established that a universal, culture-free, non-verbal sign system exists, that is available to all individuals for negotiating social encounters. Thus, it is not only the kind of gestures and expressions humans use in social communication, but also the way these movements are performed, as this seems to convey key information about an individuals quality. Dance, for example, is a special form of movement, which can be observed in human courtship displays. Recent research suggests that people are sensitive to the variation in dance movements, and that dance performance provides information about an individuals mate quality in terms of health and strength. This article reviews the role of body movement in human non-verbal communication, and highlights its significance in human mate preferences in order to promote future work in this research area within the evolutionary psychology framework

    An athletic approach to studying perception-action integration: Does sport-specific training, and the impact of injury, influence how individuals visually guide navigation?

    Get PDF
    The objective of this thesis was to investigate perception-action integration capabilities of individuals during a choice navigation task. This task assessed navigation strategies in open space while individuals avoided colliding with two vertical obstacles that created a body-scaled, horizontal gap, at three varying obstacle distances from the starting location (3m, 5m, 7m). The two studies completed in this thesis employed the same paradigm to assess the hypothesized group differences. Gaze behaviours and kinematics of navigation strategies were compared between: 1) athletes specifically trained in navigating in open space versus non-athletes; and 2) athletes with post-concussion syndrome (PCS) versus non-concussed, specifically trained athletes. Specifically trained athletes have been identified as demonstrating more successful perception-action integration in discrete motor tasks related to their sport (Mann et al., 2007; Vickers, 2007). However, whether these abilities translate to the continuous motor task of obstacle avoidance in open space was unknown. The purpose of Study 1 was to identify the influence of sport-specific training on navigating in open space (i.e. navigational strategies of large field sport athletes) compared to age-matched, non-athletes. It was hypothesized that specifically-trained athletes would demonstrate fewer, longer fixations, suggesting a more successful perception-action integration strategy (as defined by Mann et al., 2007), and would employ more sport-specific navigation strategies than non-athletes by maintaining their straight trajectory toward the goal (Fajen & Warren, 2003). Athletes were found to make fewer, longer fixations than non-athletes. However, no differences were observed between navigation strategies of the two groups, nor were any kinematic measures found to differ between groups. It can be concluded that athletes and non-athletes differentially obtain visual information to perform the same actions, suggesting that athletes and non-athletes differentially perform perception-action integration when navigating in open space. Future studies are required to identify sport-specific nuances of navigation (moving obstacles, running) to better identify athletic-related navigation strategies. Although athletic training can enhance perception-action integration strategies, sport-related injuries can hinder this process. Following a concussion, individuals experience deficits of perception-action integration that persist well beyond 30 days of recovery, post-concussion (Baker and Cinelli, 2014; Slobounov et al., 2006). These perception-action integration deficits may also exist in individual with postconcussion syndrome (PCS). The purpose of the Study 2 was to identify whether perception-action integration deficits persist with the persistent physical symptoms of concussion characteristic of PCS. The current study revealed that athletes with PCS did not differ from non-concussed athletes on any measure of visual fixation strategy, nor were they found to differ on any kinematic measure assessed. These findings suggest that in the context of the current paradigm, athletes with PCS have no perception-action integration deficit. In that, athletes with PCS may have adapted perception-action integration strategies to navigate with equal efficiency as a specifically-trained group of athletes or that the paradigm was not sensitive enough to identify these differences. Such findings suggest that more research is required to assess what, if any, perception-action integration deficits persist with persisting physical symptoms of PCS to better benefit rehabilitative procedures and outcomes for these individuals. Together, these studies add to what was previously known about perception-action integration, as it relates to navigation. Both studies assessed perception-action integration in unique populations that add to understanding of behavioural dynamics in the sport setting. Study 1 builds on a line of research assessing affordance theory and behavioural dynamics in sport (Fajen, Riley, & Turvey, 2008). The findings of this study suggest that although navigation strategies did not differ between specifically trained athletes and non-athletes, visual search strategies employed in task did. Such findings add to the understanding that sport-specific training influences perception-action integration, through our understanding of how athletes obtain visual information to perform actions. This thesis did not identify perception-action integration deficits in athletes with PCS. These findings suggest that the individuals in the present study likely adapted to their injury as they demonstrated equal ability in gaze and navigation strategies to specifically-trained athletes. As such, further research is required to assess the cognitive, motor, and sensory-motor deficits that may persist with the persisting physical symptoms of PCS. As individuals with PCS do not demonstrate similar visuomotor integration deficits as individuals with acute concussions (Baker & Cinelli, 2014), such individuals must be assessed and researched as a separate population

    A sock for foot-drop: A preliminary study on two chronic stroke patients

    Get PDF
    Background: Foot-drop is a common motor impairment of chronic stroke patients, which may be addressed with an ankle foot orthosis. Although there is reasonable evidence of effectiveness for ankle foot orthoses, user compliance is sometimes poor. This study investigated a new alternative to the ankle foot orthosis, the dorsiflex sock. Case description and methods: The dorsiflex sock was evaluated using an A-B single case experimental design. Two community-dwelling, chronic stroke patients with foot-drop participated in this study. Measures were selected to span the International Classification of Function, Disability and Health domains and user views on the dorsiflex sock were also collected. Findings and outcomes: The dorsiflex sock was not effective in improving participants’ walking symmetry, speed or energy expenditure. Participant 1 showed improvement in the distance he could walk in 6 min when using the dorsiflex sock, but this was in keeping with a general improvement trend over the course of this study. However, both participants viewed the dorsiflex sock positively and reported a positive effect on their walking. Conclusion: Despite positive user perceptions, the study found no clear evidence that dorsiflex sock is effective in improving foot-drop. Clinical relevance Although the dorsiflex sock offers an attractive alternative to an ankle foot orthosis, the case studies found no clear evidence of its efficacy. Clinicians should view this device with caution until further research becomes availabl

    Natural ZMP trajectories for biped robot reference generation

    Get PDF
    The control of a biped humanoid is a challenging task due to the hard-to-stabilize dynamics. Walking reference trajectory generation is a key problem. Linear Inverted Pendulum Model (LIPM) and Zero Moment Point (ZMP) Criterion based approaches in stable walking reference generation are reported. In these methods, generally, the ZMP reference during a stepping motion is kept fixed in the middle of the supporting foot sole. This kind of reference generation lacks naturalness, in that, the ZMP in the human walk does not stay fixed, but it moves forward under the supporting foot. This paper proposes a reference generation algorithm based on the LIPM and moving support foot ZMP references. The application of Fourier series approximation simplifies the solution and it generates a smooth ZMP reference. A simple inverse kinematics based joint space controller is used for the tests of the developed reference trajectory through full-dynamics 3D simulation. A 12 DOF biped robot model is used in the simulations. Simulation studies suggest that the moving ZMP references are more energy efficient than the ones with fixed ZMP under the supporting foot. The results are promising for implementations
    corecore