11 research outputs found

    Noise transfer for unsupervised domain adaptation of retinal OCT images

    Full text link
    Optical coherence tomography (OCT) imaging from different camera devices causes challenging domain shifts and can cause a severe drop in accuracy for machine learning models. In this work, we introduce a minimal noise adaptation method based on a singular value decomposition (SVDNA) to overcome the domain gap between target domains from three different device manufacturers in retinal OCT imaging. Our method utilizes the difference in noise structure to successfully bridge the domain gap between different OCT devices and transfer the style from unlabeled target domain images to source images for which manual annotations are available. We demonstrate how this method, despite its simplicity, compares or even outperforms state-of-the-art unsupervised domain adaptation methods for semantic segmentation on a public OCT dataset. SVDNA can be integrated with just a few lines of code into the augmentation pipeline of any network which is in contrast to many state-of-the-art domain adaptation methods which often need to change the underlying model architecture or train a separate style transfer model. The full code implementation for SVDNA is available at https://github.com/ValentinKoch/SVDNA.Comment: published at MICCAI 202

    Learning Part Segmentation from Synthetic Animals

    Full text link
    Semantic part segmentation provides an intricate and interpretable understanding of an object, thereby benefiting numerous downstream tasks. However, the need for exhaustive annotations impedes its usage across diverse object types. This paper focuses on learning part segmentation from synthetic animals, leveraging the Skinned Multi-Animal Linear (SMAL) models to scale up existing synthetic data generated by computer-aided design (CAD) animal models. Compared to CAD models, SMAL models generate data with a wider range of poses observed in real-world scenarios. As a result, our first contribution is to construct a synthetic animal dataset of tigers and horses with more pose diversity, termed Synthetic Animal Parts (SAP). We then benchmark Syn-to-Real animal part segmentation from SAP to PartImageNet, namely SynRealPart, with existing semantic segmentation domain adaptation methods and further improve them as our second contribution. Concretely, we examine three Syn-to-Real adaptation methods but observe relative performance drop due to the innate difference between the two tasks. To address this, we propose a simple yet effective method called Class-Balanced Fourier Data Mixing (CB-FDM). Fourier Data Mixing aligns the spectral amplitudes of synthetic images with real images, thereby making the mixed images have more similar frequency content to real images. We further use Class-Balanced Pseudo-Label Re-Weighting to alleviate the imbalanced class distribution. We demonstrate the efficacy of CB-FDM on SynRealPart over previous methods with significant performance improvements. Remarkably, our third contribution is to reveal that the learned parts from synthetic tiger and horse are transferable across all quadrupeds in PartImageNet, further underscoring the utility and potential applications of animal part segmentation

    Unsupervised Model Adaptation for Continual Semantic Segmentation

    Full text link
    We develop an algorithm for adapting a semantic segmentation model that is trained using a labeled source domain to generalize well in an unlabeled target domain. A similar problem has been studied extensively in the unsupervised domain adaptation (UDA) literature, but existing UDA algorithms require access to both the source domain labeled data and the target domain unlabeled data for training a domain agnostic semantic segmentation model. Relaxing this constraint enables a user to adapt pretrained models to generalize in a target domain, without requiring access to source data. To this end, we learn a prototypical distribution for the source domain in an intermediate embedding space. This distribution encodes the abstract knowledge that is learned from the source domain. We then use this distribution for aligning the target domain distribution with the source domain distribution in the embedding space. We provide theoretical analysis and explain conditions under which our algorithm is effective. Experiments on benchmark adaptation task demonstrate our method achieves competitive performance even compared with joint UDA approaches.Comment: 12 pages, 5 figure

    Does Monocular Depth Estimation Provide Better Pre-training than Classification for Semantic Segmentation?

    Full text link
    Training a deep neural network for semantic segmentation is labor-intensive, so it is common to pre-train it for a different task, and then fine-tune it with a small annotated dataset. State-of-the-art methods use image classification for pre-training, which introduces uncontrolled biases. We test the hypothesis that depth estimation from unlabeled videos may provide better pre-training. Despite the absence of any semantic information, we argue that estimating scene geometry is closer to the task of semantic segmentation than classifying whole images into semantic classes. Since analytical validation is intractable, we test the hypothesis empirically by introducing a pre-training scheme that yields an improvement of 5.7% mIoU and 4.1% pixel accuracy over classification-based pre-training. While annotation is not needed for pre-training, it is needed for testing the hypothesis. We use the KITTI (outdoor) and NYU-V2 (indoor) benchmarks to that end, and provide an extensive discussion of the benefits and limitations of the proposed scheme in relation to existing unsupervised, self-supervised, and semi-supervised pre-training protocols

    Image Manipulation and Image Synthesis

    Get PDF
    Image manipulation is of historic importance. Ever since the advent of photography, pictures have been manipulated for various reasons. Historic rulers often used image manipulation techniques for the purpose of self-portrayal or propaganda. In many cases, the goal is to manipulate human behaviour by spreading credible misinformation. Photographs, by their nature, portray the real world and as such are more credible to humans. However, image manipulation may not only serve evil purposes. In this thesis, we propose and analyse methods for image manipulation that serve a positive purpose. Specifically, we treat image manipulation as a tool for solving other tasks. For this, we model image manipulation as an image-to-image translation (I2I) task, i.e., a system that receives an image as input and outputs a manipulated version of the input. We propose multiple I2I based methods. We demonstrate that I2I based image manipulation methods can be used to reduce motion blur in videos. Second, we show that I2I based image manipulation methods can be used for domain adaptation and domain extension. Specifically, we present a method that significantly improves the learning of semantic segmentation from synthetic source data. The same technique can be applied to learning nighttime semantic segmentation from daylight images. Next, we show that I2I can be used to enable weakly supervised object segmentation. We show that each individual task requires and allows for different levels of supervision during the training of deep models in order to achieve best performance. We discuss the importance of maintaining control over the output of such methods and show that, with reduced levels of supervision, methods for maintaining stability during training and for establishing control over the output of a system become increasingly important. We propose multiple methods that solve the issues that arise in such systems. Finally, we demonstrate that our proposed mechanisms for control can be adapted to synthesise images from scratch
    corecore