5 research outputs found

    A Model for the Origin and Properties of Flicker-Induced Geometric Phosphenes

    Get PDF
    We present a model for flicker phosphenes, the spontaneous appearance of geometric patterns in the visual field when a subject is exposed to diffuse flickering light. We suggest that the phenomenon results from interaction of cortical lateral inhibition with resonant periodic stimuli. We find that the best temporal frequency for eliciting phosphenes is a multiple of intrinsic (damped) oscillatory rhythms in the cortex. We show how both the quantitative and qualitative aspects of the patterns change with frequency of stimulation and provide an explanation for these differences. We use Floquet theory combined with the theory of pattern formation to derive the parameter regimes where the phosphenes occur. We use symmetric bifurcation theory to show why low frequency flicker should produce hexagonal patterns while high frequency produces pinwheels, targets, and spirals

    The Interplay of Intrinsic Dynamics and Coupling in Spatially Distributed Neuronal Networks

    Get PDF
    We explore three coupled networks. Each is an example of a network whose spatially coupled behavior is dratically different than the behavior of the uncoupled system. 1. An evolution equation such that the intrinsic dynamics of the system are those near a degenerate Hopf bifurcation is explored. The coupled system is bistable and solutions such as waves and persistent localized activity are found. 2. A trapping mechanism that causes long interspike intervals in a network of Hodgkin Huxley neurons coupled with excitatory synaptic coupling is unveiled. This trapping mechanism is formed through the interaction of the time scales present intrinsically and the time scale of the synaptic decay. 3. We construct a model to create the spatial patterns reported by subjects in an experiment when their eyes were stimulated electrically. Phase locked oscillators are used to create boundaries representing phosphenes. Asymmetric coupling causes the lines to move, as in the experiment. Stable stationary solutions and waves are found in a reduced model of evolution/ convolution type

    Phase Boundaries as Electrically Induced Phosphenes

    No full text
    corecore