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THE INTERPLAY OF INTRINSIC DYNAMICS AND COUPLING IN

SPATIALLY DISTRIBUTED NEURONAL NETWORKS

Jonathan D. Drover, PhD

University of Pittsburgh, 2005

G. Bard Ermentrout, Dissertation Director

We explore three coupled networks. Each is an example of a network whose spatially coupled

behavior is drastically different than the behavior of the uncoupled system. 1. An evolution

equation such that the intrinsic dynamics of the system are those near a degenerate Hopf

bifurcation is explored. The coupled system is bistable and solutions such as waves and

persistent localized activity are found. 2. A trapping mechanism that causes long interspike

intervals in a network of Hodgkin Huxley neurons coupled with excitatory synaptic coupling

is unveiled. This trapping mechanism is formed through the interaction of the time scales

present intrinsically and the time scale of the synaptic decay. 3. We construct a model

to create the spatial patterns reported by subjects in an experiment when their eyes were

stimulated electrically. Phase locked oscillators are used to create boundaries representing

phosphenes. Asymmetric coupling causes the lines to move, as in the experiment. Stable

stationary solutions and waves are found in a reduced model of evolution/convolution type.
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1.0 INTRODUCTION

Dynamical systems can be used to describe most systems where variables evolve according

to laws. Examples include biological, financial, chemical, and physical systems. In these

systems, a particular variable, or quantification of a state can and usually will depend on

the quantification of other elements of the network. This is represented by coupling in a

dynamical system. On the other hand, it is often the case that the evolution of a variable

depends on its current state. In this work we focus on the interplay between the intrinsic

dynamics of a system, or the behavior of the system in the absence of coupling, and the

mechanisms that couple individual oscillators together.

This dissertation consists of three parts. In each part we analyze a different network. In

each of these networks the behavior of the uncoupled system is drastically different from the

behavior of the network when coupling in introduced.

The first two problems presented here involve excitatory networks of neurons. These

networks are capable of persistent activity and have been used to model phenomena such as

wave propagation and short term memory [43, 12]. The types of solutions that we discuss

for the first problem involve these explicitly. The second problem arose when a network

of Hodgkin-Huxley neurons was shocked at an endpoint and the resulting solution rapidly

synchronized.
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The first problem concerns an evolution equation motivated by the Morris Lecar conduc-

tance based model. In the ML system, spiking behavior is separated from resting behavior

by a branch of periodic solutions that originates at a subcritical Hopf bifurcation. The large

amplitude stable solution forms when the branch of unstable periodic solutions folds around.

The uncoupled system that we investigate is the normal form near a degenerate Hopf bifur-

cation. We consider the case where the rest state is stable so in the absence of coupling all

solutions will collapse to rest. The terms that we use to couple the network are carefully

selected so that they are of the correct order to remove the degeneracy. This induces both

an excited state (stable periodic solution) and an unstable separatix (unstable periodic solu-

tion). In addition, the linear component of the coupling is arbitrarily small. This allows the

rest state to remain locally stable regardless of the overall state of the network. The result

is a parameter regime where there is bistability. Solutions connecting the two stable states,

including waves and persistent regions of excitation, are demonstrated numerically and the

mechanisms that are responsible for the different behaviors are discussed. Partial results of

this work can be found in [18].

In the second part of this dissertation we discuss a subtle mechanism in the Hodgkin-

Huxley conductance based model that causes long interspike intervals. A single oscillator is

of type II excitability, as in the previous problem. We are concerned with the situation where

the applied current to each individual cell is sufficient to sustain repeated spiking, so that

each cell is inherently active (periodically spiking). We then couple the cells using excitatory

synaptic coupling. The results of excitatory coupling in type II neurons are well known.

First, the oscillators synchronize [30, 48] allowing one to approximate the behavior of the

system using a single self coupled cell. Secondly, because the injected current is sufficient to
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sustain oscillations we expect that the network will continue to fire. Numerical simulations

of the model give unexpected results. The interspike interval (ISI) of the coupled network is

unexpectedly long. In fact, the network spends more time in the silent phase (non-spiking)

than it did in the absence of excitatory coupling.

The mechanism that causes the extremely lowered spiking frequency is a subtle trap that,

when viewed from the appropriate frame of reference, resembles a fixed point of vortex type

(complex conjugate pair of eigenvalues). The trap is formed by the interaction of the time

scales of the uncoupled system and the time scale of the decay of a synaptic variable. The

trap is represented as a curve of points in a phase plane when the synaptic variable is taken

as a parameter. The linearization about this curve of points shows that this curve is indeed

the working attractor and that it is the mechanism responsible for the delay. Comparisons

between the approximations of release times about this curve of points and a curve defined

by the intersection of nullclines [41, 42, 4] demonstrate the superiority of the trapping curve

if one wants to analyze slow passage under certain conditions on the various time scales

present in the problem. Results concerning the vortex can be found in [17].

The final problem in this thesis is motivated by an experiment performed by R.H.S.

Carpenter [9]. A subject’s eyes are exposed to alternating electrical current. When a light

blocking object sweeps through the subject’s field of vision, interrupting a uniformly lit field,

parallel lines (phosphenes) are left in the wake of the retreating edge.

The model we use to recreate the patterns reported by the subjects is a rectangular grid

of cells. Each uncoupled cells is of integrate and fire type, with a time dependent driving

term. Parameters are chosen to lie in a regime such that each cell is phase locked 1:2 with

the current. This yields a form of bistability, where each of the two phase locked solutions

3



act as attractors. The cells are connected using nearest neighbor coupling. The action of

the coupling is to synchronize the network, pulling a node forward when it is behind its

neighbors and holding a node back when it is ahead.

We construct a reduced model based on the full model. Like the full model, the intrinsic

dynamics are bistable. Also, as in the full model, the coupling in the reduced model admits

spatial uniformity as a locally stable solution.

For the full model and the reduced model the interplay between the intrinsic dynamics

and the coupling architecture is a tug of war. The uncoupled network will settle into one

of two behaviors. The coupling between two locations that are synchronized (or equal in

the case of the reduced model) is zero. However, if neighboring nodes, or nearby points on

the line for the reduced model, are assuming the opposite behavior the coupling may cause

switching. This results in moving phase boundaries for the full model, and traveling wave

solutions for the reduced model. If the coupling is sufficiently weak the phase boundaries

in the full model will not move. In the reduced model, sufficiently small coupling results in

the existence of stable stationary solutions with discontinuities. We prove the existence and

linear stability of this type of solution.
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2.0 A COUPLING INDUCED HOPF BIFURCATION

In this chapter we consider a continuous array of oscillators along the real line. The individual

nodes (spatial locations) are excitable, meaning that an oscillator near threshold can become

excited with a perturbation. We use excitatory coupling, so that a given location can exceed

threshold when nearby oscillations can provide enough push.

Intrinsic oscillations typically occur via two mechanisms [36, 44]. In a type I neuron the

oscillations occur because of a saddle node on a limit cycle bifurcation, where the threshold

is a branch of a manifold extending from the saddle. A treatment of this type of coupled

network using normal forms is given in [35]. The type of oscillators that we consider are

type II. This means that the threshold is a branch of unstable periodic solutions that bifur-

cate from the rest state. We consider the case where this branch of periodic solution folds

into a stable periodic solution. The configuration is shown in figure 2.0.1. For parameter

values where a stable and unstable periodic solution coexist with a stable rest state there is

bistability. The unstable periodic acts as a separatix and divides the plane into two basins

of attraction.

Coupled systems near a subcritical Hopf bifurcation have been studied in [2, 33]. In

these, the coupling analyzed is linear and so the coupling can determine the local stability

properties of the resting state. The problem with this, from a neuronal standpoint, is that
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Figure 2.0.1: The described bistable regime. This is a bifurcation for the Morris Lecar

neuronal model. The horizontal axis is the applied current and the vertical axis is the

voltage. There is subcritical Hopf bifurcation for a value of I. This branch of periodic

solutions turns around to form a stable periodic solution. Since the bifurcation is subcritical

there is an interval of I such that the stable rest state coexists with the stable periodic orbit.

6



synaptic coupling is inherently nonlinear. The current state of a neuron, or coupled neu-

rons, does not affect the stability of the rest state, at least when neighboring trajectories

are in a neighborhood of the rest state. This can only happen if the coupling has non-

linear components, and linear components of the coupling are small relative to the linear

components of the uncoupled system. This is unlike diffusive coupling (eg. gap junctions)

where the presence of the coupling can change the resting state from attracting to repelling

[22, 24, 40].

Our network is a normal form near a subcritical Hopf bifurcation. The uncoupled network

has the form

(2.1) zt = z(λ + b|z|2 + f |z|4)

where b and f are complex and λ = λ1 + iλ2 is the bifurcation parameter. Equation (2.1)

can be derived from any system near a Hopf bifurcation using a series of nonlinear changes

of variables [53, 38].

The direction of bifurcating solutions depends on the real part of the coefficient b. If

Re(b) > 0 then the bifurcation is subcritical and there is a branch of unstable periodic

solutions in the direction of the stable rest state. If Re(b) < 0 the bifurcation is supercritical

and the branch of periodics is stable, extending in the direction of the unstable equilibrium.

If the real part of b vanishes, the bifurcation is degenerate. This is the Bautin Bifurcation.

We assume in this chapter that f = −1. This term causes the branch of periodic solutions

to fold into an outer branch. Dynamics near a Bautin bifurcation, particularly bursting, are

explored in [37].
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The system that we consider in this chapter is

zt = z(λ + ıq|z|2 − |z|4) + c

∫ ∞

−∞

J(x − y)N(z)dy

where c is complex and Re(c) > 0. The function N(z) is a polynomial in z such that N(0) = 0

and N ′(0) > 0. In [2, 33] only terms linear in z are included. We will truncate N(z) to

include certain nonlinear terms. To motivate our choice of terms consider the following

system consisting of two synaptically coupled neurons:

dV1

dt
= f(V1) − gs2(V1 − Vsyn)

ds1

dt
= α(V1)(1 − s1) − βs1

dV2

dt
= f(V2) − gs1(V2 − Vsyn)

ds2

dt
= α(V2)(1 − s2) − βs2

Assume that there is a rest state, Vrest, such that f(Vrest)=0 and ∂f
∂V

(Vrest) = −η < 0

ensuring that the rest state is locally stable. In addition, suppose that α(Vrest) = 0 and

that α′(Vrest) = ε > 0. Under these condtions, (Vi, si) = (Vrest, 0) is a fixed point for the

coupled system. We assume that ε is sufficiently small so that the stability of the rest state

for the uncoupled system is unaffected by the state of the rest of the network. To see this

we consider the Jacobian matrix for the two cell system. Evaluated at the point (Vrest, 0)

with ε = 0, this matrix is given by
























−η 0 0 −g(Vrest − Vsyn)

0 −η −g(Vrest − Vsyn) 0

0 0 −β 0

0 0 0 −β
























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The diagonal entries of this matrix are the eigenvalues, and each is negative. Because the

real part of the eigenvalues will vary continuously with the entries of the matrix, there exists

an ε > 0 sufficiently small so that the eigenvalues remain in the left half of the complex

plane.

Now, we extend the two cell system and consider M neurons coupled similarly to get the

system

dVi

dt
= f(Vi) − g(vi − Vsyn)

∑

j

w(i − j)sj

dsi

dt
= α(Vi)(1 − si) − βsi

where the function w(x) :
� → [0, 1] is continuous, integrable and decreases as x gets farther

from 0. In addition, we assume that
∑

j w(j) = 1.

Suppose that the time evolution of s is fast enough that for small changes in V near Vrest

we can approximate s by solving

α(V )(1 − s) − βs = 0

This gives a function s = G(V ) that we can expand around the point Vrest, thus obtaining

a polynomial expression in V . We can use this expression to slave the coupling directly to

the presynaptic potentials and get

dVi

dt
= f(Vi) − g(Vi − Vsyn)

∑

j

wi−j[R(Vj − Vrest) + ε(Vj − Vrest)]

where R consists of the nonlinear terms in the expansion . In this paper we are concerned

with the action of excitatory coupling and include only terms that contribute to excitement

away from rest. This allows the simplification

dVi

dt
= f(Vi) − g(Vrest − Vsyn)

∑

j

wi−j[R(Vj − Vrest) + ε(Vj − Vrest)]

9



Now, we consider the case M = ∞ and write the coupling as

∞
∑

j=−∞

w(i − j)G(Vj)

We assume that V is bounded. Since G is a polynomial in V it is bounded as well. Choose

∆x and let xj = j∆x. We write

(2.2)
∞

∑

j=−∞

w(xi − xj)G(V (xj))∆x

We wish to take ∆x → 0. Since G is bounded and

∞
∑

j=−∞

w(j) = 1

we have that
∞

∑

j=−∞

w(j∆x) ≤ 1

∆x
+ w(0)

so that the following holds:

∞
∑

j=−∞

w(j∆x)G(V (j∆x)) ≤ ||G||∞
∞

∑

j=−∞

w(j∆x) ≤ ||G||∞
(

1

∆x
+ w(0)

)

Thus the sum (2.2) will converge as ∆x → 0 and we write the continuous model as

Vt(x, t) = f(V ) − ĝ

∫ ∞

−∞

J(x − y)[R(V (y, t) − Vrest) + ε(V (y, t) − Vrest)]dy

For this paper, the function R only contains the cubic terms that cannot be eliminated

from the normal form using nonlinear changes of variables. All quadratic terms can be

eliminated from the normal form near a Hopf bifurcation using nonlinear changes of variables

(see [38, 53]). Because the cubic terms will dominate all higher order terms near rest, we

omit higher order terms as well.
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In this chapter, we discuss solutions to the equation

(2.3) wt = λw + bw2w̄ − w3w̄2 + c

∫ ∞

−∞

J(x − y)
[

w2(y)w̄(y) + εw(y)
]

dy

where w(x, t) : (−∞,∞) × (0,∞) → � . The parameters λ, b, c are complex and ε is small

and real. The function J satisfies

J > 0

J < ∞
∫ ∞

−∞

J(x)dx = 1

J(−x) = J(x)

For all simulations in this section, assume that J(x) = 1
2
e−|x| unless otherwise stated.

Write λ = λ1 + iλ2 and (2.3) becomes

(2.4) wt = (λ1 + ıλ2)w + bw2w̄ − w3w̄2 + cJ ∗ (w2w̄ + εw)

It is clear that when λ1 + cε = 0 the linearized system has a pair of imaginary eigenvalues,

indicating a Hopf bifurcation. The direction of the resulting periodic depends on the real

part of the parameter b + c.

Make the substitution w = z exp(iλ2t) and (2.4) becomes

(2.5) zt = λ1z + bz2z̄ − z3z̄2 + cJ ∗ (z2z̄ + εz)

We are interested in parameter values that result in bistability. From this point on we assume

that λ1 < 0 so that the rest state z = 0 is stable. Also, we assume that the real component

of all other parameters is non negative so that the Hopf bifurcation is subcritical. The other

stable solution, a plane wave, will be shown to exist in section 2.2.1

We will analyze the near-Bautin network as follows
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• We will analyze a two cell model to show which parameter regimes result in the behaviors

we desire such as existence of stable solutions bounded away from zero coexisting with

stable rest states.

• We show the linear stability of the bulk oscillations that occur when the entire network

is excited. We prove that perturbations of the plane wave decay to zero with time when

the wave number is small enough.

• We apply a theorem by X. Chen [10] to prove the existence and stability of waves for the

case where q = 0.

• Numerically observe properties of the system for the q 6= 0 case where waves continue

to exist. The important characteristics explored are the wave speed and phase gradient

with respect to the ’twist’ parameter, q. The waves are similar to those found in [23].

• Numerically observe properties of the system for the q 6= 0 case where there are no waves.

We present a likely mechanism for bounded regions of persistent activity.

2.1 A TWO EQUATION MODEL

Consider the system of equations

(2.6)
z′1 = λz1 + (b + iq)z2

1 z̄ − z3
1 z̄1

2 + (c1 + ic2)(z
2
2 z̄2 + εz2)

z′2 = λz2 + (b + iq)z2
2 z̄ − z3

2 z̄2
2 + (c1 + ic2)(z

2
1 z̄1 + εz1)

All parameters are real, and the imaginary component of the bifurcation parameter λ has

been eliminated by the change of variables used to obtain equation (2.5). Note the coupling

terms included in the two dimensional system. Consistent with the discussion in the intro-

duction, these terms cannot be eliminated from the normal form. Other cubic terms that
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cannot be similarly eliminated are discarded because they provide no contribution away from

rest. That is, if

x′
1 = f(x1) + J ∗ (x1g(x1, x2))

with f(0) = 0 and g quadratic the state x1 = 0 is positively invariant. We only want terms

that contribute to excitation away from rest, and therefore the only acceptable terms are

those included in (2.6).

We begin by writing the equations in polar coordinates. Make the change of variables

zj = rj exp(iθ) to get the system

(2.7)

r′1 = λr1 + br3
1 − r5

1 + c1C(θ)(r3
2 + εr2) + c2S(θ)(r3

2 + εr2)

r1θ
′
1 = qr3

1 + c2C(θ)(r3
2 + εr2) − c1S(θ)(r3

2 + εr2)

r′2 = λr2 + br3
2 − r5

2 + c1C(θ)(r3
1 + εr1) − c2S(θ)(r3

1 + εr1)

r2θ
′
2 = qr3

2 + c2C(θ)(r3
1 + εr1) + c1S(θ)(r3

1 + εr1)

where C(θ) = cos(θ1 − θ2) and S(θ) = sin(θ1 − θ2).

We want to explore the parameter regimes that allow a stable rest state to coexist with

the stable large amplitude oscillation. Set φ = θ1 − θ2 in (2.7) to get

(2.8)

r′1 = λr1 + br3
1 − r5

1 + c1(r
3
2 + εr2) cos(φ) + c2(r

3
2 + εr2) sin(φ)

r′2 = λr2 + br3
2 − r5

2 + c1(r
3
1 + εr1) cos(φ) − c2(r

3
1 + εr1) sin(φ)

φ′ = q(r2
1 − r2

2) − c1 sin(φ)(g(r1, r2) + g(r2, r1) + c2 cos(φ)(g(r2, r1) − g(r1, r2))

where

g(x, y) =
x3 + εx

y

We seek the conditions on the parameters that lead to stable symmetric solutions, or solutions

satisfying r1 = r2. In addition, we want the oscillators to be phase locked 1:1, so that φ′ = 0.

13



2.1.1 Symmetric Solutions

We seek solutions of the system (2.8) such that R = r1 = r2. If we assume solutions of this

type, then (2.8)can be reduced to

(2.9)

R′ = λR + bR3 − R5 + c1(R
3 + εR) cos(φ) + c2(R

3 + εR) sin(φ)

R′ = λR + bR3 − R5 + c1(R
3 + εR) cos(φ) − c2(R

3 + εR) sin(φ)

φ′ = −2c1 sin(φ)g(R, R)

It is obvious that the only possibilities are φ = 0 or φ = π. We consider the in phase

solutions, or solutions of the form R = r1 = r2 and φ = 0. This leaves us with the equation

(2.10) R′ = (λ + c1ε)R + (b + c1)R
3 − R5

Solving for values of R where (2.10) vanishes we get the trivial solution R = 0 and the

positive roots given by

(2.11) R =
1

2

√

2(b + c1) ±
√

(b + c1)2 + 4(λ + c1ε)

For ε sufficiently small the assumptions that λ < 0 and b, c1 ≥ 0 gaurantee the existence of

two positive roots whenever (b + c1)
2 + 4(λ + c1ε) > 0. This give us the existence condition

(2.12) (b + c1) > 2
√

−λ − c1ε

If we assume that

b + c1 > 2
√
−λ

Then (2.12) will hold for ε > 0.

This means that even when b = 0 we can still have a periodic solution for coupled system.

If we set b = 0 then the condition is simply c1 > 2
√
−λ − c1ε. The implications of this are
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straightforward. If b = 0 then the Lyapunov coefficient in the normal form vanishes, and the

Hopf bifurcation for the uncoupled system is degenerate. The direction of the bifurcating

periodic solutions depends on the coupling. We assume that b = 0 for the remainder of the

paper, as well as the condition

c1 > 2
√

−λ − c1ε

so that the degeneracy is resolved and the existence of the periodic solutions is coupling

induced.

We show that the symmetric phase locked solutions are stable. Linearizing the system

(2.8) at the symmetric solutions yields

(2.13)

















α(R) β(R) γ(R)

β(R) α(R) −γ(R)

a(R) −a(R) b(R)

















where α(R) = λ− 5R4, β(R) = c1(3R
2 + ε), γ(R) = c2(R

3 + εR), a(R) = 2qR− 4c2R− 2 c2ε
R

,

and b(R) = −2c1(R
2 + ε).

The characteristic polynomial for the matrix (2.13) is

(x − α − β)(x2 + (β − b − α)x + αb − βb − 2γa)

This equation yields the following conditions for a symmetric in-phase solution to be stable:

α + β < 0(2.14)

β − b − α > 0(2.15)

αb − βb − 2γa > 0(2.16)
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Along the lesser of the positive solutions we have that

R =
1

2

√

2(c1) − 2
√

(c1)2 + 4λ

Substituting this into (2.14) gives

√

c2
1 + 4λ + 4c1ε

(

c1 −
√

4λ + c2
1 + 4εc1

)

+ 2εc1

Under the existence condition (2.12) this is real and positive. This implies that the inner

branch of solutions is always unstable.

Similarly, substituting the outer solution into α + β gives the expression

√

c2
1 + 4λ + 4c1ε

(

−c1 −
√

c2
1 + 4λ + 4εc1

)

+ 2c1ε

For ε sufficiently small, this expression is negative, satisfying (2.14). It remains to check the

other two conditions.

Substituting the outer solution into β − b − α we get the expression

5c2
1 + 4λ + 10c1ε + 5c1

√

c2
1 + 4(λ + c1ε)

Because c2
1 + 4(λ + εc1) > 0 the condition (2.15) is satisfied.

Rewrite the condition (2.16) as

F (c2) = Ac2
2 + Bc2 + C > 0

where

A = 8λ + 4c2
1 + 12c1ε + 4(c1 + ε)

√

c2
1 + 4λ + 4c1ε

B = −q(2(ε + c1)
√

c12 + 4λ + 4c1ε + 4λ + 2c2
1 + 6εc1) = −qD

C = 4c1

[

(λ + 4c1ε + 2c2
1)

√

c2
1 + 4λ + 4c1ε + 4c1(5λ + 2c2

1) + 8ε(λ + 4c2
1 + 2c1ε)

]
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A, D, and C are all positive under the assumed conditions on the parameters. Thus, if c2 = 0

then we have that C > 0 and condition (2.16) is satisfied. Suppose that c2 > 0. Because

D > 0, there can always be a q sufficiently large so that F (c2) < 0. At the critical value of

q = q∗, a single eigenvalue crosses the x = 0 axis. This destabilizes the equilibrium.

For the remainder of this chapter we assume that c2 = 0 so that the stable periodic is

stable for any q. We will also assume that

c1 > 2
√

−λ − εc1

λ + εc1 < 0

so that the outer branch of symmetric oscillations exists and the network lies in a bistable

parameter regime.

2.2 THE INTEGRO-DIFFERENTIAL EQUATION

Consider a generalization of the two equation system

(2.17) zit = zi(λ + ıq|zi|2 − |zi|4) + c
∞

∑

j=−∞,j 6=i

ωi,j(z
2
j zj + εzj)

where all parameters are the same as before. The interaction weights ωi,j = ω(i − j) are

non-negative and decrease as i − j gets further from zero. We normalize so that

∞
∑

j=−∞,j 6=i

ωi,j = 1

for every i. An important difference between the system (2.17) and the two equation system

is that the oscillators need not be synchronized for there to be a symmetric solution (|zi| =
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R2∀i)away from zero. Again, make the change of variables zi = rie
ıθi to get the evolution

equation for θ

(2.18) riθ
′
i = qr3

i + c
∑

j 6=i

ωi,j sin(θj − θi)(r
3
j + εrj)

At this point we define the phase gradient of a solution to be the first spatial derivative

of θ. For the discrete case it is the difference between the θ values in consecutive nodes.

If we assume that ri = R for every i, then any constant phase gradient is time invariant,

and in turn uniform amplitude is time invariant. This is different from the two equation

system since the oscillators had to be synchronous in order for the symmetry to persist.

Now consider the evolution equation for the amplitude component of zi

(2.19) r′i = ri(λ − r4
i ) + c

∑

j

ωi,j cos(θj − θi)(r
3
j + εrj)

If we assume once more that ri = R for all i, and assume a constant phase gradient we may

rewrite as

R′ = R(λ + εcη − R4) + cηR3

where

η =
∑

j

ω(i − j) cos(θj − θi)

The right side is independent of i, seen by making the change of variables l = i − j

η =
∑

l

ω(l) cos(kl)

where k is the phase gradient. This is similar to equation (2.10) with b = 0. Correspondingly,

we expect that the outer branch of periodic solutions will exist and if the condition

cη > 2
√

−λ − εcη
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holds. For large phase gradients result in small values of η we expect that if the oscillations

are sufficiently desynchronized the plane wave solution can cease to exist.

The continuous analog to equation (2.17) is

(2.20) zt = λz + iqz2z̄ − z3z̄2 + (c1 + ic2)

∫ ∞

−∞

J(x − y)
[

z2(y)z̄(y) + εz(y)
]

dy

where z ∈ � and all parameters are the same as for the two dimensional system. As for the

two equation model, we let c2 = 0, so that the synchronous solution z = ρ exp(iΩt) is always

stable, for some Ω.

We now show, for the existing conditions imposed on the parameters, the linear stability

of the plane wave solution to (2.20).

2.2.1 Plane Wave Solutions

Consider solutions of (2.5) of the form

(2.21) z(x, t) = ρ exp(i(Ωt − kx))

Substituting (2.21) into (2.5) gives

iρΩ exp(i(Ωt − kx)) = ρ exp(i(Ωt − kx))(λ + iqρ2 − ρ4)

+c1

∫ ∞

−∞

J(x − y)(ρ3 + ερ) exp(i(Ωt − ky))dy

Simplification results in

iΩ = λ + iqρ2 − ρ4 + (ρ2 + ε)c1

∫ ∞

−∞

J(x − y) exp(ik(x − y))dy
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Letting Ĵ(k) =
∫ ∞

−∞
J(s) exp(iks)ds gives

iΩ = λ + iqρ2 − ρ4 + c1(ρ
2 + ε)Ĵ(k)

Separating real and imaginary parts yields

Ω = qρ2 + c1(ρ
2 + ε)Im(Ĵ(k))

with ρ determined by

λ − ρ4 + c1(ρ
2 + ε)Re(Ĵ(k)) = 0

Because J is symmetric Im(Ĵ(k)) = 0 and so the equations become

Ω = qρ2

λ − ρ4 + c1(ρ
2 + ε)Ĵ(k) = 0

The existence of the plane waves is shown. We now show that the plane waves of sufficiently

small wave number are linearly stable.

Let

(2.22) z(x, t) = ρ exp(i(Ωt − kx)) + w(x, t)

where w(x, t) :
� × [0,∞) → � is a small perturbation. Substitute (2.22) into (2.5) and take

terms linear in w to obtain the expression

(2.23) wt = f(w) + c1

∫ ∞

−∞

J(x − y)(ρ2e2i(Ωt−ky)w̄ + (2ρ2 + ε)w)dy

where

f(w) = λw + iqρ2(2w + e2i(Ωt−kx)w̄) − ρ4(3w + 2e2i(Ωt−kx)w̄)
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We wish to show that w → 0 as t → ∞. Let w = exp(i(Ωt−kx))v and substitute into (2.23)

to get the equation

(2.24)
ıΩv + vt = λv + ıqρ2(2v + v̄) − ρ4(3v + 2v̄)

+c
∫ �

J(x − y)
[

ρ2eık(x−y)v̄ + (2ρ2 + ε)eık(x−y)v
]

dy

The coupling can be written as

(2.25) c

∫

� J(s)eık(s)
[

ρ2v̄(x − s) + (2ρ2 + ε)v(x − s)
]

ds

Separating the real and imaginary parts of (2.25) gives

(2.26) c

∫

� J(s)
[

(3ρ2 + ε) cos(ks)v1(x − s) − (ρ2 + ε) sin(ks)v2(x − s)
]

ds

(2.27) c

∫

� J(s)
[

(ρ2 + ε) cos(ks)v2(x − s) + (3ρ2 + ε) sin(ks)v1(x − s)
]

ds

where v = v1 + ıv2. Equation (2.26) is the real component of the coupling, and (2.27) is the

imaginary component. Separating the uncoupled system into real and imaginary components

and combining with equations (2.26)- (2.27) yields the following system

(2.28) −Ωv2 + v1t = λv1 − qρ2v2 − 5ρ4v1 + A1(v1, v2, x)

(2.29) Ωv1 + v2t = λv2 + 3qρ2v1 − ρ4v2 + A2(v1, v2, x)

where v = v1 + ıv2 and Ai(v1, v2, x) denote the expressions (2.26) and (2.27), respectively.

Since we have that Ω = qρ2 on the plane wave equations (2.28)- (2.29) simplify to

(2.30) v1t = λv1 − 5ρ4v1 + A1(x)
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(2.31) v2t = λv2 + 2qρ2v1 − ρ4v2 + A2(x)

We define the linear operator L to be

L~v = − ∂

∂t
~v +









λ − 5ρ4 + c(3ρ2 + ε)Jc ∗ (·) c(ρ2 + ε)Js ∗ (·)

2qρ2 − c(3ρ2 + ε)Js ∗ (·) λ − ρ4 + c(ρ2 + ε)Jc ∗ (·)









~v

where ~v = (v1, v2), Jc = J(x) cos(kx), and Js = J(x) sin(kx). We look for bounded solutions

satisfying L~v = 0. We consider solutions of the form v1 = eαteilxu1 and v2 = eαteilxu2 where

u1 and u2 are constants. We aim to show that for certain values of k these eigenfunctions

will decay to zero, corresponding to a stable manifold connected to the plane wave solution.

Since J is assumed to be even, the coupling expression (2.26) becomes

(2.32)
ceαteilx

∫ �
J(s) [(3ρ2 + ε) cos(ks) cos(ls)u1] ds

+ıceαteilx
∫ �

J(s) [(ρ2 + ε) sin(ks) sin(ls)u2] ds

and, similarly, the expression (2.27) can be written

(2.33)
ceαteilx

∫ �
J(s) [(ρ2 + ε) cos(ks) cos(ls)u2] ds

−ıceαteilx
∫ �

J(s) [(3ρ2 + ε) sin(ks) sin(ls)u1] ds

The system L~v = 0 can be written as

(2.34) α









u1

u2









=









λ − 5ρ4 + c(3ρ2 + ε)Jcc +ıc(ρ2 + ε)Jss

2qρ2 − ıc(3ρ2 + ε)Jss λ − ρ4 + c(ρ2 + ε)Jcc

















u1

u2









where

Jss =

∫ ∞

−∞

J(s) sin(ks) sin(ls)ds
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and

Jcc =

∫ ∞

−∞

J(s) cos(ks) cos(ls)ds

These function can be expressed in terms of the Fourier Transform, Ĵ(k), of the interaction

function

Jcc =
1

2
Ĵ(k + l) +

1

2
Ĵ(k − l)

Jss = −1

2
Ĵ(k + l) +

1

2
Ĵ(k − l)

The top panel of figure 2.2.1 shows that , for k = 0, the real part of the greatest eigenvalue

is negative for all l 6= 0. The middle panel shows that for k = 0.5 small perturbations from

the plane wave will grow since the real part of the eigenvalue is positive. The lower left

panel shows that for a k > 0 there is a stable corresponding plane wave. Thus there must be

an interval surrounding k = 0 such that the perturbation goes to zero, and hence the plane

wave is stable (linearly). This result extends to the case of any J such that Ĵ(k) decreases

as k gets farther from 0.

Under the conditions imposed on the parameters, we have shown that there is both a

stable rest state at z = 0 and a stable plane wave of the form (2.21).

2.2.2 Traveling Wavefronts (The q = 0 case)

In this section we show that under the conditions set previously on the parameters there are

traveling wave solutions connecting the stable rest state to the stable plane wave solution

for the case q = 0. That is, there is a solution to (2.5) such that

(2.35) z(x, t) = h(x − ct)ρei(Ω(k)t−kx)

where h(−∞) = 1 and h(∞) = 0.
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Figure 2.2.1: Stability of the plane wave. The left panels show values of k, the wave number,

such that the greatest eigenvalue of the system (2.34) (vertical axis) is negative, correspond-

ing to a linearly stable plane wave. The right panel shows that for sufficiently large k the

plane wave destabilizes. In all panels, the horizontal axis is l, the rotation of the eigenfunction

uie
ilx that corresponds to a stable manifold.
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We begin by making the change of variables z = reiθ. Then (2.5) becomes:

(2.36) rt = λr − r5 + c1

∫ ∞

−∞

J(x − y)(r3(y) + εr(y)) cos(θ(y) − θ(x))dy

(2.37) rθt = qr3 + c1

∫ ∞

−∞

J(x − y)(r3(y) + εr(y)) sin(θ(y) − θ(x))dy

If we assume that q = 0, then (2.37) becomes

(2.38) rθt = c1

∫ ∞

−∞

J(x − y)(r3(y) + εr(y)) sin(θ(y) − θ(x))dy

Note that θ(x) = C is a solution to (2.38). That is, having a zero phase gradient is time

invariant. Under the assumption that θ(x) = C, the system defined by (2.36) and (2.38) is

reduced to

(2.39) ρ′ = λρ − ρ5 + c1

∫ ∞

−∞

J(x − y)(ρ3(y) + ερ(y))dy

We show that there exists a unique (up to a translation), asymptotically stable traveling

front that satisfies (2.35) (k = 0) and is a solution to (2.39) by application of the following

theorem:

Theorem 1 Chen, [10]

Consider the evolution equation

(2.40) ut = Duxx + G(u, J1 ∗ S1(u), ..., Jn ∗ Sn(u))

where J ∗ S(u) stands for the convolution
∫

R
J(x − y)S(u(y))dy. Assume:

1. For some a∈(0, 1), the function f(u) = G(u, u, ..., u) satisfies f > 0 in (−1, 0) ∪ (a, 1),

f < 0 in (0, a) ∪ (1, 2), and f ′(0) < 0, f ′(a) > 0, and f ′(1) < 0.
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2. For each i = 1, ..., n, the kernel Ji is C1 and satisfies Ji(.)≥0,
∫

R
Ji(y)dy = 1, and

∫

R
Ji(y)dy < ∞.

3. The functions G(u, p) (p = (p1, ..., pn)), and S1(u), ..., Sn(u) are smooth functions satis-

fying ∀u∈[−1, 2], p∈[−1, 2]n, i = 1, ..., n, Gpi(u, p)≥0, Si
u(u)≥0.

4. Either D > 0 or Gu(u, p) < 0 and Gp1(u, p)S1
u(u) > 0 on [−1, 2]n+1.

If conditions 1-4 hold, there exists a unique (up to a translation) asymptotically stable

monotone traveling wave connecting 0 to 1.

For our system

G(u, J1 ∗ S1, J2 ∗ S2) = λu − u5 + c1J ∗ εu + c1J ∗ u3

G(u, u, u) = (λ + εc1)u − u5 + c1u
3

Gu(u, p) = λ − 5ρ4

S1(u) = εu

s2(u) = u3

Gpi(u, p) = c1

S1
u(u) = ε

S2
u(u) = 3u2

The first condition in the theorem requires that the system be bistable. As has been the

case throughout this paper, we are assuming that c1 > 2
√
−λ. It has been shown previously

that if this condition holds then there are two stable solutions separated by an unstable

separatix.
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The second condition is satisfied under the conditions that we have set on the interaction

function J .

The third condition requires that Gp = c1 ≥ 0 and Si
u(u) ≥ 0. Both of these are satisfied.

The fourth condition is also satisfied, since λ − 5u4 < 0 for any u. We have that

Gp1(u, p) = c1 > 0 and S1
u(u) = ε > 0.

We may conclude that there exists a traveling wave connecting the stable rest state at

u = 0 to the non rotating plane wave (fixed point). This only applies to the q = 0 case. We

expect that the wave will continue to exist for values of q in a neighborhood of q = 0, but

have no formal proof. Numerical simulations suggest that these waves exist, and we discuss

these waves in the next subsection.

It is interesting to note that the wave is shown to exist for every ε > 0 allowed by the

work in previous sections. However, the theorem does not apply to the case ε = 0. The

difficulty is that one cannot, using the machinery in Chen’s proof, show that the following

comparison lemma holds:

Lemma 1 Chen’s Lemma

There exists a positive continuous function η(x, t) defined on [0,∞) × (0,∞) such that if

u(x, t) and v(x, t) satisfy −1 ≤ u, v ≤ 2,

ut ≥ G(u, J ∗ S1(u), J ∗ s2(u))

vt ≤ G(v, J ∗ S1(v), J ∗ S2(v))

and u(,̇0) ≥ v(,̇0), then

u(x, t) − v(x, t) ≥ η(|x|, t)
∫ 1

0

[u(y, 0)− v(y, 0)]dy

for all x ∈ R, t > 0.
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To proof this Chen uses a positive lower bound on the function

Ĵ(x, y, t) =

∫ 1

0

2
∑

i=1

Gpi(w, J ∗ S1(w), J ∗ S2(w))(x, t)Si
u(w)(y, t)|w=u+θvdθ

This bound needs to be independent of initial conditions. If ε = 0 then S i
u(0) = 0. Thus,

initial conditions can be chosen to make this arbitrarily small, and no uniform lower bound

is possible. It is not apparent whether or not the comparison in Chen’s Lemma holds.

The problem as ε → 0 is that the wave could ’flatten out’. Let Uε(x − ct) = uε(x, t) be

the traveling wave solution to (2.39). Shift it so that Uε(0) = A, where A is the unstable

separatix. For any 0 < ε � 1 we know that U ′
ε(0) < 0. One needs to show that

lim
ε→0

U ′
ε(0) = β < 0

We can resolve the existence of the wave for ε = 0 by converting the integral equation to

a system of differential equations. For this we assume that

J(x) =
1

2
e−|x|

The Fourier transform of this function is

Ĵ(k) =
1

1 + k2

Let

A(x, t) =

∫

� J(x − y)R(y)3dy

Using a Fourier transform we get that

A − Axx = R3
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Now, since we are looking for traveling waves with constant velocity, let ζ = x − ηt to get

−ηR′(ζ) = λR(ζ) − R(ζ)5 + cA(ζ)

A′′(ζ) = A(ζ) − R(ζ)3

Let A1 = A′ to get a 3-dimensional system of first order ODEs

R′ = − 1
η

(λR − R5 + cA)

A′ = A1

A′
1 = A − R3

This system has three fixed points (u∗, A∗, A∗
1) at

(0, 0, 0)





√

c +
√

c2 + 4λ

2
,





√

c +
√

c2 + 4λ

2
)





3

, 0









√

c −
√

c2 + 4λ

2
,





√

c −
√

c2 + 4λ

2





3

, 0





Numerical simulations of the system of ODEs suggest that for η small the unstable manifold

extending from the origin passes through the R axis to the left of the fixed point with the

largest R component. For large η this manifold crosses the vertical line

R =

√

c +
√

c2 + 4λ

2

in the R − A1 plane below the R axis. This suggests that there is a shooting argument to

prove the existence of a heteroclinic solution connecting the fixed points. We performed the

shooting argument numerically to find a heteroclinic connecting the outer fixed points. This

orbit is shown in the R−A1 plane in figure 2.2.2. The solutions shown exists for η = 3.884.
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Figure 2.2.2: The heteroclinic connecting the outer stable solution with the rest state. This

heteroclinic corresponds to a wave for equation (2.39) with ε = 0. The horizontal axis is R

and the vertical axis is A1. In this figure Ĵ(k) = 1/(1 + k2), λ = −0.5, c = 3 and η = 3.884.

2.2.3 Waves with a Phase Gradient

Because there is a stable (translation invariant) traveling wave for the case q = 0, we suspect

that there are waves for values of q in some interval surrounding zero. The major difference

in the q = 0 waves from the waves with q 6= 0 is that a phase gradient is created in the latter.

We will no longer assume that the waves are of a constant velocity. For the remainder

of this chapter, a wave (right moving) is a solution such that

(2.41) lim
t→∞

z(x + At, t) = ρeı(Ωt−kx)

for some A > 0. The right hand side is the stable plane wave. On the other hand, there is

no wave if the condition

(2.42) lim
t→∞

z(x + At, t) = 0
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holds for all A > 0. These definitions allow for waves that propagate and then recede, but

after a number of iterations the front has made progress across the medium. When discussing

wave speed we are referring to average wave speed and details regarding calculations of wave

speed will be presented whenever relevant. Solutions that appear (numerically) to satisfy

(2.42) are discussed in section 2.2.4.

In this section we look at numerical simulations of the waves for small, positive values of

q. The characteristics of interest are the wave speed (or average wave speed) as a function

of q, and the corresponding phase gradient. We expect that the phase gradient along the

wave front increases, in absolute value, as q. We hypothesize that nonzero phase gradients

result in slowed waves, relative to the q = 0 case.

Consider equation (2.37). The parameter q controls to what extent the amplitude of

oscillations at a given x will influence the evolution of θ at x. Since the amplitude of the

oscillations are greater once the wave has passed than before it passes, oscillations behind

the wave will have a shorter period than those in front. Thus, for any nonzero value of

q, a phase gradient will appear. This, in turn, affects the evolution of the amplitude of

oscillations. Recall the coupling in equation (2.36):

∫

J(x − y)[(r3(y) + εr(y)) cos(θ(y) − θ(x))]dy

When the phase gradient is non zero the cos(θ(y) − θ(x)) decreases from 1. This reduces

the effective strength of the coupling along the wave front. Because the coupling strength is

reduced from the q = 0 case, we expect that wave solutions will have lower wave speeds.

At this time it is important to note that we offer no proof of existence for these waves.

Although it is likely that the waves for the q = 0 case are hyperbolic, in the sense that
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small perturbations to a parameter will not result in either destabilization or cessation of

existence, we cannot show this explicitly. Instead we rely on the condition

c > 2
√
−λ − εc

Recall that this condition was derived using synchronous oscillations of the network, or a zero

phase gradient. We claim that the action of the parameter q is to induce a phase gradient

along the wave front. As discussed above, this phase gradient results in a lowering of the

effective coupling strength. We write

(2.43) Rt = λR − R5 + c(q)

∫

� J(x − y)
(

R(y)3 + εR(y)
)

dy

where dc(q)
dq

< 0 for every q > 0. In addition, c(0) = c, the parameter value. If we assume

continuity for the function c(q) for small values of q, then we may conclude that the outer

periodic solution exists for small values of q and that it is stable, provided that

c(q) > 2
√

−λ − εc(q)

Assuming this condition, Chen’s Theorem 1 provides the machinery to prove the existence

and stability of a traveling wave solution to equation (2.43) for q small.

Simulations support these arguments. For q small the waves propagate across the

medium. The wave speed with respect to q is plotted in Figure 2.2.3. For the lesser values

of q tested, the curve is rather flat. This is not surprising because the cosine function is flat

when the argument is near zero and so the effective coupling strength is relatively insensitive

to small phase gradients. For larger q, the slope of the curve decreases from zero. Near

q = 1.2 the curve is almost vertical. Reliable data for values of q > 1.2 were not obtainable.
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Figure 2.2.3: Top Panel: The wave speed as a function of q. The left of the medium

was initially excited. The wave speed was calculated by taking the time (from t = 0) that

R(40) = 1.5 and the time that R(60) = 1.5 and subtracting. The velocity shown is 20/∆t.

Bottom Panel: The phase gradient at the wavefront as a function of q. The approximation

of the phase gradient was calculated by taking θ(61) − θ(60) when R(60) = 1.5.
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In the lower panel of figure 2.2.3 is a graph of the phase gradient along the wave front. As

expected, the phase gradient is an increasing (in absolute value) function of q.

Let r(x, t, q) be the profile of the amplitude of a solution to (2.5). Define the set

W =
{

q | lim
t→∞

r(x + At, t, q) = ρ for some A > 0
}

If q ∈ W there is a solution to (2.5) that satisfies (2.41). Numerical simulation of the network

suggest that this set is bounded above and there is a critical value

q∗ = sup W

Figure 2.2.4 shows an example of a wave for q ∈ W , in this case q = 1. In the next section

we discuss solutions for q > q∗.

2.2.4 Localized Regions of Activity

In the previous section, the mechanism by which waves have reduced speed due to a nonzero

phase gradient is discussed. This mechanism can be extended to explain solutions that do

not propagate across the medium, but are persistent where excitation has already taken

place.

It is this type of solution that provides the physiological motivation for this chapter,

the behavior of a slice of disinhibited cortical tissue [26, 11]. Shocking the tissue results

in a traveling front. Eventually, this front terminates and a pulse results. In addition,

stationary patterns of activity in networks has been suggested as a mechanism to model

working memory [39, 50]

The network that we are analyzing is a type II network where the threshold is an unstable

periodic solution. A similar study for the case of type I networks is presented in [47]. In
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Figure 2.2.4: Traveling wave solution with a nonzero phase gradient. In the left panel the

grayscale represents the value of the real component of the variable z. The vertical axis is

time and increases in the downward direction. The horizontal axis is space. The value of

the real part of z is indicated by greyscale. The right panel is the profile of the amplitude

of the system along the domain (
√

|z|, dotted line) and the value of θ(x) (dashed line). The

horizontal axis is the spatial variable, x. The arrow shows the time on the array plot that

correspond to the front shown. Parameters for this figure are λ = −0.5, c = 3 and q = 1.
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this paper, the authors consider a network of type I oscillators connected with excitatory

coupling. They show that, in general, propagation will occur if the network is sufficiently

synchronous. Asynchrony results in localized persistent activity, where excited locations do

not propagate because the overall push to nodes on the edge of the bump is not strong

enough for them to exceed threshold. The case that we present here is similar. The amount

of synchrony in our network can be quantified by the phase gradient along the real line.

When the phase gradient is zero, the oscillators are perfectly synchronized and propagation

occurs. This is the q = 0 case. When the network is sufficiently desynchronized, given by

a large phase gradient resulting from a large value of q, propagation cannot occur and the

result is a bump. For the type II case that we study, this is a result of effective lateral

inhibition.

Our coupling function, J(x) is positive everywhere. This implies that the coupling is

purely excitatory. Normally, an excitatory network is not expected to demonstrate localized

regions of persistent activity. On the other hand, using a Mexican hat type interaction

function, or a function that satisfies

J(x) > 0 when x ∈ (a, b)

J(x) ≤ 0 when x /∈ (a, b)

easily results in local excitation [1, 27]. The lateral inhibition characteristic of the coupling

function causes spacial locations away from the center of the excited state to be inhibited

by it, and so they remain near a rest state.

Though our coupling function is non-negative everywhere, the phase gradient caused by

non zero values of q induces a lateral inhibition-like effect on the network. Once again, the
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Figure 2.2.5: The interaction function, similar to a Mexican hat. Networks coupled with

this type of function often admit persistent localized activity.

coupling term for the evolution of the amplitude of z is

(2.44)

∫

J(x − y)r3(y) cos(θ(y) − θ(x))dy

Let k(q) be the phase gradient at excited regions, such as behind a wave as in figure 2.2.4.

We know that this is an increasing function of q. Approximate (2.44) by

∫

J(x − y)r3(y) cos(k(q)(y − x))

and rewrite as
∫

Ĵ(x − y)r3(y)dy

where Ĵ(x) = J(x) cos(k(q)x). This kernel induces lateral inhibition for any phase gradient.

A graph this interaction function is shown in figure 2.2.5. As q increases, causing k(q) to

37



increase, the point on the x-axis where the lateral inhibition begins is closer to x = 0. Because

J(x) is monotone decreasing as x increases, an increase in k(q) results in stronger lateral

inhibition, and less excitation. We hypothesize that some k∗ = k(q∗) acts as a threshold

such that for q > q∗ the lateral inhibition is sufficiently strong to prevent wave propagation.

For q < q∗ the wave propagates, as in the previous section.

In order to support this numerically we use initial conditions such that the left half line is

initially in the excited state, oscillating near the plane wave solution, while the right half line

is initially at rest. Figure 2.2.6 shows an array plot of a solution that does not propagate,

along with the profile of the function r(x).
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Figure 2.2.6: A solution that does not propagate. The left half line is excited initially and

the right half line is initially at rest. The solution propagates slightly but does not cross the

entire medium. Parameter values for this solution are λ = −0.5, c = 3, and q = 2.0.

We consider the state of the coupling for the solution shown in figure 2.2.6. Figure 2.2.7
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shows the value of the function

J(x0 − x) cos(θ(x0) − θ(x))r(x)3

for x0 = 58. It is easily seen from this figure that the front will not propagate since locations
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Figure 2.2.7: The state of the coupling for x0 = 58. The solid line is the profile of r(x).

The dotted line is the value of the function J(58 − x) cos(θ(58) − θ(x))r(x)3. This function

is scaled so that it can be viewed on the same set of axis as r. The figure shows that

locations that need to be recruited in order for propagation are actually inhibited by the

large amplitude oscillations behind the front.

to the right are inhibited by the already excited region.

The mechanism responsible for localized regions of persistent activity is identical. The

initially excited region need not span the entire half line. As long as the interval of initial

excitation is large enough that it can sustain itself oscillations will persist. The lateral

inhibition prevents propagation on both fronts. A bump for q = 2 is shown in figure 2.2.8.
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Figure 2.2.8: A persistent pulse. On the bump the oscillations remain near the plane wave

solution. On either side of the bump, the oscillations are inhibited via the lateral inhibition

mechanism discussed. The right panel shows the profile of the bump at a fixed time. The

parameter values for this figure are λ = −0.5, c = 3 and q = 2.
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The pulses will not, in general, have stationary profiles satisfying

0 = λR − R5 + c

∫

� J(x − y) cos(θ(x) − θ(y))R(y)3dy

The evolution of the phase of oscillators on a pulse will be faster than the corresponding

evolution of oscillations away from the pulse. Suppose there is a pulse solution centered at

x = 0. As x → ∞ the period of oscillations decreases to zero. On the other hand, the center

of the pulse has ∂θ
∂x

≈ 0 and so the coupling is small. This allows the approximation

∂θ

∂t
≈ qr(x)2

This implies periodicity in the value

(θ(0) − θ(x))mod(2π)

for x sufficiently far from zero. This, in turn, results in periodic strength of coupling. The

coupling alternately inhibits and excites locations on the sides of the bump. This is the

motivation for the definitions (2.41) and (2.42). The front locates so that the net effect

of the alternating excitation and inhibition is zero. Figure 2.2.9 shows the minimum and

maximum, determined as closely as possible, of a bump. In figure 2.2.7 the configuration

shown is during the time when the bump is receding.
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Figure 2.2.9: A breathing pulse. Each curve shows the profile of the amplitude. The solid

curve is the minimum state of the breather, as well as could be determined. The dotted

curve is the maximum state. The profile oscillates between these two states. For this figure

λ = −0.5, c = 3 and q = 2.
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2.3 SUMMARY

In this chapter we discuss solutions to an evolution equation where the uncoupled system is

near a degenerate Hopf bifurcation. Without coupling, all solutions go to the rest state. The

coupling that we use is chosen so that the degeneracy is removed and the stability properties

of the rest state are unaffected. Also, the coupling is purely excitatory, so that oscillations

get a push from nearby activity.

We obtain useful conditions on the parameters by analyzing a two equation model that

possesses the important characteristics of the full equation. Under these conditions we are

able to prove the existence and linear stability of plane wave solutions bounded away from

rest. The configuration is a branch of unstable periodic solutions that turns around to form

an outer branch of stable periodic solutions.

We prove the existence and stability of traveling waves for the case where zero phase

gradients are time invariant. For the case where phase gradients occur we describe a lateral

inhibition mechanism by which waves continue to exist but with slower wave speeds. Finally,

we show that the when the network is sufficiently desynchronized the lateral inhibition effect

is strong enough to prevent propagation. The resulting Mexican hat-like interaction allows

regions of persistent activity. These pulses are not stationary bumps. The profile of the

bumps alternately advances and retreats so that the net propagation is zero.
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3.0 LOW FIRING FREQUENCY FOR A NETWORK OF

HODGKIN-HUXLEY NEURONS WITH EXCITATORY SYNAPTIC

COUPLING

In this chapter we explore a phenomena in the Hodgkin-Huxley model of the squid giant

axon [32]. Similar to the previous chapter, this problem involves unusual implications of

excitatory coupling. The focus of this chapter is the exploration and analysis of a subtle

mechanism that causes the network to synchronize rapidly and fire slowly.

The individual cells that we study are of type II excitability, as in the previous chapter.

We consider the case where each cell received sufficient applied current to sustain firing in the

absence of coupling. When coupled, the network rapidly synchronizes. Once synchronized

the network continues to fire since the applied current is superthreshold. The unusual effect is

that the synchronized network fires much more slowly, or has longer interspike intervals (ISIs)

than the uncoupled network. We show that this is the result of an interesting mathematical

structure called a canard. In two dimensions canards are rather delicate and are often only

realized in the context of canard explosions [15]. In three dimensions a canard is somewhat

less sensitive to perturbations in the parameters [52], and this case is no exception. The

mechanism that we describe is very robust and exists over a large interval of parameter

values.
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Large ISIs in the Hodgkin-Huxley neuronal model have been explored previously in [19].

Unlike what we explore, the authors numerically analyze an uncoupled cell. The authors

decomposed the system into slow and fast components and changed the values of τn and

τh, the timescales of evolution for the n and h variables. The slowing of the network was

attributed to a lowering of the instability (decrease in the real part of the eigenvalues) of a

critical point in the fast subsystem. The vortex structure that we present in this work was

not discovered.

Also, in [48] it is shown that synchronized relaxation oscillations can exhibit a longer

period than the corresponding uncoupled system. In [29] it is shown how weakly coupled

oscillations can exhibit lower firing frequencies once synchronized. Each of these works are

summarized in [46]. The phenomena that we explore takes place entirely in the silent phase,

unlike the case in [48]. Also, we are not under the weak coupling assumption. The mechanism

that we explore is not of either of these types.

The structure of this chapter is as follows:

• We show, via simulation, the effect of the coupling for a network of Hodgkin-Huxley

neurons. We show that the same effect is present for a reduced model, obtained as in

[45]. Finally, due to synchrony, we justify the use of a self coupled model to approximate

the behavior of the full system.

• We propose a simple model that has all of the necessary ingredients for the slowing.

• We approximate the difference between two calculations of the slow passage, or equiva-

lently, the release value for the synaptic variable. To this end, we employ slow passage

calculations through a Hopf bifurcation [4, 41, 42] to obtain a way-in way-out func-

tion that relates the strength of the attraction before the bifurcation to the strength of
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repulsion after the orbit has passed.

3.1 NUMERICAL SIMULATIONS OF NETWORKS

A network of excitatory cells has, in general, well known behavior. The effect of excitatory

coupling on synchrony is of particular importance here. There are a number of factors, but

we focus on properties of the intrinsic dynamics of an individual neuron. If a neuron is of type

I excitability (a saddle node configuration), excitatory coupling typically desynchronizes a

network [25]. For a type II neuron (large amplitude periodic solutions are the result of a Hopf

bifurcation) excitatory coupling typically causes the network to synchronize [30]. For the

network we consider fast threshold modulation [48] plays a role in the rapid synchronization.

Figure 3.1.1 shows one example of each of these configurations. In the left panel of

the figure a network of Traub pyramidal neurons is shown [49]. These neurons are type I

excitable. Also, the applied current is sub threshold and thus will not cause the network

to ignite at any location without receiving excitation from other other cells in the network.

Readily seen in the figure is rapid, asynchronous firing. This is often the case when excitable

neurons are coupled together [30, 31, 28], and in particular type I [25]. The right panel

depicts the behavior of a network of Hodgkin-Huxley neurons, which are type II excitable.

The applied current for this simulation is above threshold and so, even in the absence of

coupling, the individual neurons will oscillate. As the excitatory coupling is introduced the

network rapidly synchronizes and the interspike intervals increase.

The goal of this chapter is to explain the extreme slowing of firing in the Hodgkin-Huxley
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Figure 3.1.1: Behavior of networks of neurons coupled with excitatory coupling depends on

the intrinsic dynamics. The left panel shows the activity of 50 cells with Traub pyramidal cell

dynamics. The type 1 neurons do not synchronize and maintain activity with a subthreshold

applied current. The right panel is 50 Hodgkin-Huxley neurons. These neurons reach near

synchrony (spikes, though subthreshold oscillations may be out of phase) once the coupling

is turned on. The current applied here is superthreshold, though the ISI is somewhat longer

than for the uncoupled system.
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network. We begin by reducing the full HH system to a lower dimensional system, using

well known techniques [45]. The reduced system behaves similarly to the full system. The

only difference is that in the reduced model the sub threshold oscillations that lead up to a

jump to the large amplitude periodic are synchronized, while in the full model they are not.

The reduced system is given by

(3.1)

C dV
dt

= −gL(V − VL) − gKn4(V − VK) − gNam
3h(V − VNa)

+I0 − gsyns(V − Vsyn)

dh
dt

= h∞(V )−h
τh(V )

m = m∞(V )

ds
dt

= α(V )(1 − s) − s
τsyn

The values of the parameters and the various functions are given in the appendix. The self

coupling in this model is used to make analysis simpler by only observing a single cell while

emulating the behavior of the entire network. The rapid synchronization of the coupled

network justifies this simplification.

3.2 THE V-H PLANE

We rewrite the equations for the reduced HH model (3.1)

(3.2) C
dV

dt
= f(V, h) − gsyns(V − Vsyn)

(3.3)
dh

dt
= αh(V )(1 − h) − βh(V )h
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where

f(V, h) = I0 − gNah(V − VNa)m
3
∞(V ) − gK(V − Vk)n

4(h) − gl(V − Vl)

and the equation for the synapse is

(3.4)
ds

dt
= α(V )(1 − s) − s

τsyn

In this section we observe the behavior of the system of equations (3.2), (3.3) with the

value of s fixed, as if it were a parameter.

For our parameter values, the variable h evolves more slowly than V . The behavior of

the V − h system depends on the value of s. If s is large then there is a stable fixed point

at the intersection of nullclines and therefore no oscillations. For s small enough the fixed

point is no longer stable and there is a large amplitude periodic. The transition between

these states is a Hopf bifurcation (figure 3.2.1).

For each value of fixed s the set of solutions to dV
dt

= 0 forms a triple branched curve.

The outer branches are attracting. For values of s corresponding to an unstable fixed point

the periodic can be decomposed into a silent phase (trajectory is near the curve dV
dt

) and an

active phase. This is a relaxation oscillation where the trajectory follows a critical manifold

until reaching a fold. Once the trajectory reaches the fold, the fast variable dominates and

there is a jump to the other stable branch of the fast nullcline (figure 3.2.2).

The slowing mechanism that we discuss takes place during the silent phase, or the period

of time that the trajectory is near the left branch of the V -nullcline. During this time, the

function α(V ) ≈ 0 and so we get that

ds

dt
≈ − s

τsyn
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Figure 3.2.1: Bifurcation Diagram for the HH equations parameterized by s. As s decays

the attractor during the silent phase changes stability via a Hopf bifurcation. For values of

s to the right of the bifurcation point the steady state solution is stable. For values of s to

the left the fixed point is unstable. This bifurcation results in the large amplitude periodic

solutions corresponding to spikes, which are difficult to obtain with any accuracy numerically

and omitted.
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Figure 3.2.2: The projection of the system (3.2)- (3.4) onto the V − h plane. The trajectory

travels up the fast nullcline as s decays in the left plane. Eventually the trajectory escapes

and jumps to the other branch of the fast nullcline and repeats. The fast nullcline is only

shown for a small value of s, near the release point. For larger s, the nullcline is lower in the

h direction and raises up as s decays.
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The V -nullcline depends on s and will move up in the h direction as s decays. The h-

nullcline does not depend on s. Though much of our analysis is based on the s′ = 0 case, it

is important to note that s evolves whenever V and h do.

3.3 THE INTERSECTION OF NULLCLINES AND EXTENDED DELAY

For s large and fixed the intersection of the nullclines corresponds to a stable equilibrium

point for the system. As s decays through the interval of s values corresponding to a stable

equilibrium the trajectory is drawn towards the intersection. As s decays past the value that

is associated with the Hopf bifurcation, the trajectory continues to approach the intersection.

When s gets very small there is an escape to the large amplitude oscillation, or spike. From

simulations alone, one would estimate that the bifurcation value for fixed s is quite small,

but this is not the case. As seen in figure 3.2.1, the bifurcation value is s ≈ 0.222, while the

escape takes place for a much smaller value. This implies that the orbit is drawn toward

the intersection even as it represents an unstable equilibrium. The goal of the remainder of

this section is to uncover the mechanism by which this occurs, and to use this mechanism

to develop an expression that gives an estimate of the value of s that corresponds to escape

and hence an estimate of the duration of this delay.

3.4 INGREDIENTS FOR THE DELAY

In the system (3.2), (3.3), (3.4) orbits appear to be attracted to a point that is unstable for

the case of s fixed. For the full system, where s decays exponentially, there are no equilibrium
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points for s > 0. Linear stability results based on the fixed s analysis may not apply here,

and the curve of values in the V − h plane may not repel the orbit when it is unstable for

the fixed s system. Linear stability results may not be suitable for this problem.

There are a number of candidates for the cause of this delay. The simplest to visualize is

that the h-nullcline has negative slope with respect to V during the silent phase. Also, the

point (V (t), h(t)) lies to the left of this nullcline and so h is increasing. As s decays, the h

values along the V -nullcline are increasing, and so the intersection is moving up and left in

the V − h plane. This provides a mechanism for the decay of s to drive the orbit towards

the intersection regardless of the linearization about the intersection.

For a value of s near the Hopf bifurcation, the nullclines are in the fold canard configura-

tion [15]. Although this only lasts for a small interval of time it may provide the mechanism

for a canard to arise in the full system. It must be noted at this point that we will not

utilize tools such as nonstandard analysis or a singular decomposition of the slow and fast

components of the system, though this canard configuration appears to be quite important

in any system that exhibits this delay.

3.5 A SIMPLE SYSTEM

In order to do any direct analysis on the slowing mechanism it is ideal to have a system that

is simpler than the system defined by (3.2)- (3.4). We want a system where the right hand

sides are polynomials in the variables so that the nullclines are given by polynomials. We

wish for our model to incorporate the following characteristics:

• The slow nullcline has a negative slope with respect to the fast variable, provided the
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trajectory approaches the slow nullcline from the left after it enters the silent phase. If

the approach is from the right, then we require that the slope of the nullcline be positive.

• When parameterized by s, we require that the eigenvalues of the linearization at the

intersection of the nullclines be positive for large values of s, and then change stability

via Hopf bifurcation as s decays. For values of s near the bifurcation value the system

must be in the fold canard configuration.

• The vector field of the system is analytic and autonomous during the silent phase.

The model that we use to incorporate these items is

(3.5)
dx

dt
= −f(x) + y − I(s)x

(3.6)
dy

dt
= −ε

(

y +
1

4
x5

)

(3.7)
ds

dt
= − s

τsyn

where 0 < ε � 1. We only consider x < 0 since the behavior during the active phase does

not effect the behavior during the silent phase besides resetting the configuration after a

spike. The functions in the simple system are given as

f(x) =
1

4
x3 − 2x

and

I(s) =
3

2
s.
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3.5.1 Notation

We use the following notation for the remainder of the chapter:

• Nf(x, s) :
� 2 → �

is the y-coordinate of the fast nullcline ({y| dx
dt

(x, y, s) = 0}). This

function is well defined for each point (x, s) ∈ (−∞, 0) × [0, 1].

• Ns(x) :
� → �

is the y-coordinate of the slow nullcline ({y| dy
dt

(x, y) = 0}). This function

is also well defined for all x < 0. Note that there is no s dependence.

These curves are given by

Nf (x, s) = f(x) + I(s)x

Ns(x) = −1

4
x5

We have that
∂Nf

∂s
< 0 for x < 0 and these curves intersect for each fixed s. We let (x̃(s), ỹ(s))

denote the curve of intersection points.

3.6 ANALYSIS USING THE VARIATIONAL EQUATION

In this section we describe the method that we use to approximate the release value of s.

Consider a system

x′ = f(x, y)

y′ = g(x, y).

Suppose that there is a curve in the x − y plane, G, that acts as and attractor for certain

values of x and y, and then switches to a repelling curve after the solution crosses some

threshold. We can approximate the behavior in a neighborhood of this curve by using a
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variational equation

(3.8)
d

dt









z1

z2









= A(G)









z1

z2









where

A(G) =









∂f
∂x

(G) ∂f
∂y

(G)

∂g
∂x

(G) ∂g
∂y

(G)









The solution to equation (3.8) can be written









z1

z2









= exp

(
∫ t

0

A(G(s))ds

)









z10

z20









where z1(t) = x − G1 and z2(t) = y − G2. The functions G1 and G2 are the x and y

component of G, respectively. This solution can be used to approximate the solution to the

full system in a neighborhood of G. In this paper, we use it to approximate the value of the

independent variable when the solution leaves a specified neighborhood of the curve. Our

method is described here.

We use the 2-norm. Choose an entrance criterion, η, the value of the initial distance of

the solution from the curve for the initial value of the independent variable. For the example

above, we choose t = 0 and a value of (x, y) such that ‖(z1(t), z2(t))‖ = η. Since the curve

G is assumed to be an attractor at first, the solution to (3.8) will decay for a period of time.

Once the attractor switches to a repelling curve, the solution to (3.8) will grow. We look for

the first value of t such that
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣









z1(t)

z2(t)









∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= η
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This value of t will be called the release value, or the value of t where the solution is no

longer in the specified neighborhood of the curve G.

There are some issues that must be resolved before one can expect this analysis to result

in an accurate approximation of the behavior of the full system. Consider the example

discussed in [15]

εx′′ + (x′ + a) + x = 0

where a = 0.0000001. If we rewrite as

x′ = y = f(x, y)

εy′ = −x − (a + y)2 = g(x, y)

we can view the system on the phase plane, as in figure 3.6.1 In [15], the domain of the

way-in way-out function (equivalent to our variational equation) is determined by the loca-

tion of a funnel, a curve in the plane where solutions leave a neighborhood of the critical

manifold together (see figure 3.6.1). For trajectories that enter the desired neighborhood of

the critical manifold to the right of the funnel, the way-in way-out function will give good

approximations. However, because our variational equation is just a decaying exponential

during the attracting phase and a growing exponential during the repelling stage, the results

for initial entry to the left of the funnel will give misleading information. The variational

approximation will always give longer release times for longer attracting times. This is in-

consistent with the actual results, where there is an upper bound for release times, caused

by the funnel. The domain of the way-in way-out function is only those entry locations that

are unaffected by the funnel.
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Figure 3.6.1: A trajectory funnel. The equation represented here is x′′ + (x′ + a)2 + x = 0.

The x-nullcline is marked Nf and the y-nullcline lies on the x-axis. Trajectories 1 and 2 are

candidates for a variational approach. Trajectories 3 and 4 are not, since they each leave

some neighborhood of the critical curve at roughly the same location.
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For our problem, we must locate the domain of our way-in way-out function. We do this

by plotting the value of sexit as a function of senter for actual solutions (Figure 3.6.2). For

entry values of s located within the domain of our way-in way-out function the value of sexit

will be a decreasing function of senter. We assume that the variational approach is invalid

for larger values of senter, where the graph is flat. Figure 3.6.2 suggests the domain of our

way-in way-out function can be approximated by the interval [0.45, 0.55]. For s larger than

0.55, there is a funnel. For s smaller than 0.45 the trajectory does not spend enough time

in the attracting phase and the stays further from the vortex curve. For this situation a

linear approximation of the system around the vortex point is inadequate. For analysis in

the following sections we will use senter = 0.5.

In the following sections we perform a way-in way-out analysis for two curves. In the

next section we do the calculations for the intersection of the nullclines. Following this, we

perform the calculations for a different curve that acts as a trapping mechanism. The details

of both of these calculations can be found in section 3.11.

3.7 ANALYSIS AROUND THE INTERSECTION OF THE NULLCLINES

In figure 3.2.2 it can be seen that the trajectory is visibly separated from the graph of Ns(x),

and hence there is separation from the intersection of the nullclines. This does not rule out

the possibility that the variational analysis described in the previous section will give a good

approximation to the release value of s. We will perform the analysis, a comparison between

the approximation obtained from the above analysis and the actual results, and show that

in fact this is not the optimal curve and that the approximations are less than ideal.
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Figure 3.6.2: An approximation to the domain of the way-in way-out function used to

approximate the release value of s. To determine the domain of this function, we look for

values of senter such that an increase will result in a decrease in the corresponding value of

sexit. For value of senter greater than those shown the graph is somewhat flat.
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We carry out the calculation of the standard method. Let J(s) be the Jacobian matrix

of the system defined by (3.5)- (3.6) along the the curve (x̃(s), ỹ(s)). We have that

(3.9) J(s) =









−3
4
x̃2(s) + 2 − I(s) 1

−ε5
4
x̃4(s) −ε









The equation of variation is

(3.10)
d

ds









x

y









= −τsyn

s
J(s)









x

y









The solution to (3.10), given an initial value (x0, y0, senter), is

(3.11)









x

y









= exp

(
∫ s

senter

−τsyn

ω
J(ω)dω

)









x0

y0









Given the initial condition we may solve the equation

(3.12)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

exp

(
∫ s

senter

−τsyn

ω
J(ω)dω

)









x0

y0









∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣









x0

y0









∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

This equation gives an approximation of s such that the distance (in the plane) of the orbit

from the intersection is the same as it was when it entered. We take this to be the exit value

of s.

For typical slow passage problems [15, 14, 41, 42], the value obtained by solving (3.12)

gives a good approximation for the exit value of s. For the problem under consideration here,

the results are poor, especially for the lower values of τsyn tested. This is not surprising.

When the decay of s is not sufficiently slow compared to the evolution of y, the standard

theory breaks down. The results for an interval of τsyn is shown in figure 3.7.1. Solving

equation (3.12) results in an overestimate for the release value of s, and a corresponding
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Figure 3.7.1: Comparison between the actual release value for s and the approximation

obtained via the variational method. The curve of approximations is somewhat invariant

with respect to τsyn. This is expected since the only place that τsyn appears in the variational

equation (3.11) is a multiplying constant. To obtain these curves we chose senter = 0.5 for the

reasons discussed in the previous section. The initial conditions that we chose are x0 = −η

and y0 = 0. For this figure η = 0.3. The corresponding initial conditions for the actual

values obtained are x0 = x̃(senter) − η and y0 = ỹ(senter).
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underestimate for the time spent in the silent phase. Note also that the curve of approxima-

tions in figure 3.7.1 is somewhat flat. This is expected since the Jacobian matrix (3.9) does

not depend on τsyn. It does appear in equation (3.11), but this equation can be written








x

y









= exp(τsyn) exp

(
∫ s

senter

− 1

ω
J(ω)dω

)









x0

y0









And the equation to be solved can be written
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

exp

(
∫ s

senter

− 1

ω
J(ω)dω

)









x0

y0









∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= η exp(−τsyn)

This implies that

d

dτsyn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

exp

(
∫ s

senter

− 1

ω
J(ω)dω

)









x0

y0









∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −η exp(−τsyn)

which is small. Since the norm requirement for exit does not depend strongly on τsyn, the

value of s that satisfies equation (3.12) will reflect this.

On the other hand, simulations suggest that the value of s that satisfies the exit criterion

should vary as the logarithm of τsyn.

The poor performance of the usual slow passage approach suggests that this is not the

ideal method for approximating the release value of s, and the corresponding time spent

in the silent phase. In the remainder of this chapter we discuss a trapping mechanism

(vortex canard) that is also represented as a curve in the x − y plane. We will show that

approximations based on the new structure will yield superior results to the usual approach

discussed in this section for values of τsyn where the evolution of y and s are on similar time

scales. For sufficiently slow synaptic decay (large τsyn) we find that the usual approach is

sufficient and as τsyn → ∞, the approaches are identical.
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3.8 THE TRAPPING MECHANISM

As s decays, the function Nf (x, s) will rise for relevant values of x < 0 since
∂Nf

∂s
< 0.

Consider the set

(3.13) A(s) = {(x0, y0) |
dy

dt
(x0, y0) <

dNf

ds
(x0, s)

ds

dt
}

This set consists of the points in the x − y plane that are evolving in the y direction more

slowly that the fast nullcline evaluated at the same x coordinate. This set is nonempty since

Nf(x, s) increases as s decays for fixed x < 0. The evolution in the y direction on the slow

nullcline is 0, and so the slow nullcline is in the set A(s) for any value of s. Also, as x → −∞,

dy
dt

→ ∞ and so this set has a left boundary for any value of s. This boundary is a curve in

the x − y plane and will be denoted by y∂A(s)(x). For the simple system (3.5), (3.6) we can

express the boundary curve explicitly

(3.14) y∂A(s)(x) = −1

4
x5 +

3xs

2ετsyn

Notice that as τsyn → ∞ we have that y∂A(s)(x) → Ns(x) and that y∂A(0)(x) = Ns(x).

The boundary curve is shown in figure 3.8.1, along with the nullclines Nf (x, s) and Ns(x).

This figure also reveals the trapping mechanism that causes the delay. If the trajectory lies

to the right of y∂A(s)(x) the trajectory will be moving in the positive y direction more slowly

than the fast nullcline at the same x coordinate. If the orbit lies above the fast nullcline,

it may cross it and begin to move leftward in the plane. The solution then can cross the

boundary curve and will begin to evolve in the y direction faster than Nf(x, s). Again, it

may cross the fast nullcline and begin to move rightward in the plane eventually crossing

the boundary curve. This repeats and the result it a vortex structure that evolves along the
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intersection of the boundary curve and the fast nullcline. We aim to show that this structure

is, for s above a certain value determined by τsyn, a good approximation to the attractor that

causes the long ISIs. It must be restated that this vortex point is only an approximation to

the attractor. To explain why we denote the intersection of the curves Nf(x, s) and y∂A(s)

as (x̂(s), ŷ(s)). Notice that

dŷ(s)

ds

ds

dt
=

∂Nf

∂s

ds

dt

is not satisfied. This is because the set definition (3.13) is for fixed x0. The set A(s) is used

only to specify the location of the intersection, not the evolution of it. We need to satisfy

the condition

ŷ(s) = Nf(x̂(s), s)

for each value of s. Implicitly differentiating the above expression gives

dŷ

ds
(s) =

dx̂

ds

∂Nf

∂x
(x̂(s), s) +

∂Nf

∂s
(x̂(s), s).

The set A was developed using the assumption that
∂Nf

∂x
≈ 0. In addition, the actual

attractor should be a solution of the system of equations (3.17)- (3.18). This is obviously

not the case for our approximation, since the vortex point always lies on the fast nullcline

and would correspond to vertical solutions in the plane.

Simulations verify that the actual solution follows the curve of vortex points very closely.

In the next section, we perform the linear stability analysis about this curve to determine

what values of s result in an attractor, as well as a bifurcation value of s where the vortex

structure switches from attracting to repelling.
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Figure 3.8.1: Representative flow around the vortex point. The shaded region is the relevant

subset of A(s). When the trajectory lies above the fast nullcline it is traveling from left

to right in the plane. If it is to the left of the curve ∂A(s) it is traveling in the positive

y-direction faster than Nf and so will pass. If the solution lies to the right of the boundary

curve the nullcline will catch it. The result is a spiral structure that traps solutions.
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3.9 EQUATIONS OF THE MOVING VORTEX

To perform analysis on the system near the moving vortex created by the intersection of the

fast nullcline and the boundary of the set A(s), we simplify by making a change of variables

so that the vortex structure is always centered at the origin. Denote the intersection point

of y∂A(s)(x) and Nf(x, s) as (x̂(s), ŷ(s)). Make the linear change of variables

z1 = x − x̂(s)

z2 = y − ŷ(s)

to get the system

(3.15)
dz1

dt
=

dx

dt
− dx̂

ds

ds

dt

(3.16)
dz2

dt
=

dy

dt
− dŷ

ds

ds

dt

which we will write

(3.17)
dz1

dt
= F1(z1, z2, s)

(3.18)
dz2

dt
= F2(z1, z2, s)

where the evolution of s is governed by equation (3.7). the functions F1 and F2 are

F1(~z, s) = −f(z1 + x̂(s)) + z2 + ŷ(s) − I(s)(z1 + x̂(s)) +
s

τsyn

dx̂

ds
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F2(~z, s) = −ε(z2 + ŷ(s) +
1

4
(z1 + x̂(s))5) +

s

τsyn

dŷ

ds

We use the identity

dz1

dt
=

dz1

ds

ds

dt

to write the system as

dz1

ds
= −τsyn

s
F1(~z, s)

dz2

ds
= −τsyn

s
F2(~z, s)

Explicit formula for dx̂
ds

and dŷ
ds

can be obtained, though they are too cumbersome to write

here. The procedure used is to solve the equation

y∂A(s)(x) = Nf(x, s)

for x̂(s), and differentiate the expression with respect to s. Since ŷ(s) = Nf (x̂, s) we evaluate

the derivative

dŷ

ds
=

dx̂

ds
Nf(x̂, s) + Nf s(x̂, s)

Assume that s is fixed as a parameter. We can compute the linearization of the system

(3.17)- (3.18) about the vortex point (z1, z2) = (0, 0). It is important to note that when

s is a parameter the structure at the origin is not a fixed point. However, we do expect

that the eigenvalues corresponding to the linearization about the origin will give information

concerning whether or not the surrounding neighborhood of the vortex is attracting, and

the strength of that attraction. The change of variables used to shift the vortex structure

to the origin incorporates the parameter τsyn into the linearization about the vortex. It can

be seen from figure 3.9.1 that the value of s that results in a stability change, or where the

real part of the eigenvalues changes sign, depends on τsyn. Also, equally encouraging, is that
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Figure 3.9.1: Value of s where the change in stability takes place. The dotted line is the

value of s where the real part of the eigenvalues of the linearization about the intersection

of nullclines vanishes. The solid line is where the real part of the eigenvalues corresponding

to the vortex curve vanish.
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this change occurs at a lower value of s than the similar occurrence at the intersection of

the nullclines. The analysis performed in the previous section resulted in overestimates of

the release value of s. Since the vortex structure is attracting for a longer interval of time,

we expect that trajectories that are attracted will remain near longer, once the stability has

changed. Both dependence on τsyn and a lower value for the change of stability are apparent

in simulations but are not a part of the analysis in section 3.7.

3.10 RELEASE ANALYSIS ABOUT THE VORTEX

Because the real component of the eigenvalues vanishes at a smaller value of s for the lin-

earization about the vortex point than for the corresponding linearization about the inter-

section of the nullclines, we expect that using a variational equation about the vortex point

will result in a superior estimate for the release value of s, at least for all but extremely large

values of τsyn.

The method for obtaining estimates based on the curve of vortex points is the same as

that performed in section 3.7. We write the system (3.17)- (3.18) in vector form

(3.19)
d~z

ds
= −τsyn

s
~f(~z, s)

and so the equation of variation about the vortex curve (0, 0, s) is

(3.20)
d~z

ds
= −τsyn

s
~f~z(0, 0, s)~z

where

(3.21) ~f~z = −τsyn

s









−3
4
x̂(s)2 + 2 − I(s) 1

−ε5
4
x̂(s)4 −ε








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Note that this is identical to the linearization in section 3.7, but centered at the vortex point

rather than at the intersection of the nullclines. The solution to (3.20) can be written

(3.22) ~z(s) = exp

(

−τsyn

∫ s

s0

1

ω
~f~z(0, 0, ω)dω

)

~z(s0)

We use the function in (3.22) to approximate the release value of s by solving the equation

(3.23) ‖~z(s)‖2 =

∣

∣

∣

∣

∣

∣

∣

∣

exp

(

−τsyn

∫ s

senter

1

ω
~f~z(0, 0, ω)dω

)

~z(senter)

∣

∣

∣

∣

∣

∣

∣

∣

2

for s. The results are shown in figure 3.10.1. The results are quite good. The curve of

approximation values follows the curve of the actual values closely for all of the values of

τsyn tested. In [17], under the assumption that O
(

ε
τsyn

)

= 1, it is shown that the error

resulting from the variational approach around the vortex point is of a smaller magnitude

than the corresponding error for the curve of intersection.

The results obtained suggest that the vortex structure is the attractor for solutions

during the silent phase. This implies two things. First, it offers an explicit solution to a

system of ODEs during the interval of time where the synaptic variable decays. Secondly, the

linearization around this curve and the corresponding variational equation closely reproduce

the behavior of the full system. There is no doubt that this mechanism is responsible for

the prolonged silent phase in the simple system (3.5)- (3.7). Since the foundation of the

vortex structure, the set A, exists for the Hodgkin-Huxley system it is only reasonable to

assume that this same mechanism is responsible for the long interspike intervals obtained

via simulation. The analog to figure 3.8.1 for the HH equations is shown in figure 3.10.2.
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Figure 3.10.1: Comparison between the value of sexit determined by the full set of equations

(dotted line) and the value obtained using the variational equation. The results are quite

good. For this figure senter = 0.5 and η = 0.3. The initial values used are z1 = −η and

z2 = 0 for both the full system (3.17)- (3.18) and the variational equation.
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Figure 3.10.2: The relevant part of the set A for the Hodgkin-Huxley system (3.2)- (3.4) is

shaded. This provides the foundation for the vortex structure to exist for this system. There

is no doubt that the extremely long ISIs are the result of the behavior of solutions near this

structure.
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3.11 DETAILS OF THE CALCULATIONS

This section serves to describe how equations (3.12) and (3.23) are solved. The procedure is

identical for each curve. The equation to be solved is

(3.24)

∣

∣

∣

∣

∣

∣

∣

∣

exp

(

−τsyn

∫ s

senter

1

ω
J(ω)dω

)

~v0

∣

∣

∣

∣

∣

∣

∣

∣

2

= ||~v0||2

For the system (3.5)- (3.7) the matrix J(s) is the linearization matrix about the relevant

point for each s. For the analysis done in section 3.7 this matrix is the linearization around

the fixed point for s fixed. For the analysis discussed in section 3.10 it is the linearization

around the intersection of the boundary of the trapping set and the nullcline corresponding

to the fast variable. In either case, the relevant curve of points can be obtained via the

quadratic formula and hence exact expressions are available.

For both curves the software MAPLE [51] provides a symbolic evaluation of the integral

in equation (3.24). The integrated matrix has two complex conjugate eigenvalues and thus is

diagonalizable. We apply the diagonalization to determine the exponential of the matrix as

in [34]. The matrix-vector multiplication and the evaluation of the 2-norm were carried out

using LAPACK (Linear Algebra package) and BLAS (Basic Linear Algebra Subroutines).

The equation was solved using bisection [3].

3.12 τSY N LARGE

For values of τsyn very large, where s evolves more slowly than h, the two methods presented

here are equivalent. In the τsyn → ∞ limit the curve of vortex points is identical to the curve
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of points defined by the intersection of the nullclines. Figure 3.7.1 shows that the error in

the approximation around the intersection is decreasing as τsyn increases. The curve defined

by the vortex points is a superior approximation for values of τsyn where s and h evolve on

similar timescales. It also provides a good approximation for large values of τsyn, though it

is unlikely that this mechanism would be uncovered since the more intuitive approach using

the intersection of the nullclines would provide an adequate approximation.

3.13 SUMMARY

It is common that coupling excitatory cells will accelerate firing for cells that fire intrinsically

[28]. In this section we have uncovered a mechanism that causes a network of Hodgkin-Huxley

neurons receiving super-threshold stimulation to drastically slow down. The interspike inter-

vals (ISIs) increase as the synaptic current decay rate decreases. In the absence of synaptic

connections the system fires at a given frequency. Turning on the coupling causes the cells

in the network to rapidly synchronize, with the exception of some subthreshold oscillations.

The cells, thus synchronized, continue to fire since each receives a constant input that is

above threshold. The synchronized network exhibits the long ISIs.

Because the network is homogeneous and rapidly synchronizes we are able to use a self-

coupled model for a single cell to analyze the entire network. We deduce the important

characteristics, relevant to the slow firing, from the self coupled system and construct a

simple system where evolution of the variables is controlled by polynomial expressions in

those variables and possesses the identified characteristics.

We use this simpler system to identify possible mechanisms that cause a prolonged silent
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phase. First, we view the system as a projection on the phase plane. When parameterized

by the synaptic variable the phase plane has a fixed point. When the value of the synaptic

variable is above a bifurcation value, the fixed point is stable. For values of s below the

bifurcation value the fixed point is unstable. Since the synaptic variable decays in time,

solutions of the system should approach the intersection at first. Once the bifurcation value

is reached, the intersection begins to repel solutions. We use a variational equation, or way-in

way-out function, to approximate solutions in a neighborhood of this curve. The variational

equation relates the strength and duration of the attraction/repulsion before and after the

change in stability. The approximation obtained is not good for the case where the synaptic

variable evolves on a similar time scale as the gating variable.

The second curve that we consider is a vortex structure that traps solutions in its vicinity

for an extended period of time, relative to the intersection of the nullclines. This structure

is the consequence of a comparison between the rates of evolution of the fast nullcline (de-

termined by the synaptic variable) and the slow gating variable. We identify this trap in the

simple model and use the same type of analysis to show that the vortex mechanism is the

working attractor and that trajectories are drawn to it while the synaptic variable decays.

The results of the analysis are quite good. The variation equation taken along this curve

reproduces, quite accurately, the behavior of solutions during the silent phase. The way-in

way-out analysis gives extremely accurate values for the exit value of s.

This trapping mechanism is a canard in three dimensions [52]. The orbit is drawn towards

a curve of point that represent stable fixed points in the plane. As time increases the curve

of fixed points passes through a Hopf bifurcation causing the this curve of critical points to

switch from attracting to repelling. The solution remains near the unstable critical curve for
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an extended period of time.

The reduced HH system (3.2)- (3.4) possesses an equivalent trapping mechanism. It is

concluded that this is the mechanism responsible for the long ISIs as seen in figure 3.1.1.

In [17] it is shown how this mechanism can be applied to bursting behavior. The fixed

point is unstable for small s. If s is fixed at such a value, the system will fire repeatedly since

there is no change for the orbit to get drawn into the trap. If the recovery of s is sufficiently

slow during the active phase the orbit will reach the left branch of the fast nullcline while

the fixed point is unstable. This will result in another spike. Once the recovery of s exceeds

the bifurcation value during the active phase the orbit will be drawn into the trap and the

described long silent interval will take place. The number of spikes per burst depends on

how quickly the synaptic variable recovers. Slower recovery will result in larger bursts. Fast

recovery will result in fewer bursts. In figure 3.1.1 there is only a single oscillation since the

recovery of s is sufficiently fast to allow the trap to take effect.
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4.0 PHASE BOUNDARIES AS ELECTRICALLY INDUCED

PHOSPHENES

The final problem that I discuss is a model for a retinal visual phenomena. As in the previous

chapters, the problem involves non-local coupling of nodes in a medium. Unlike the problems

presented so far, the local dynamics are not excitable and, in the case of a reduced model

that we present, not oscillating. The local dynamics that we consider are bistable so that,

in the absence of coupling, nodes will eventually converge to one of two steady states. The

coupling that we use allows synchrony as a persistent solution so that if a node is ’ahead’ of

a neighbor it is held back. Similarly, if a given node is ’behind’ its neighbors it catches up.

We consider two models. The first is a two-dimensional grid of integrate and fire cells

developed to reproduce the visual patterns reported by subjects in an experiment to be

described next. In the second part of the chapter we discuss an evolution equation that

captures the major behavioral characteristics of the full model.

In experiments performed by R.H.S. Carpenter [9] subjects immersed his/her eyes in

a saline bath. Alternating current is passed through the bath and the subject looks at a

uniformly lit screen. When the light is interrupted to the subject’s eye by a moving object

sweeping across the visual field, parallel lines, called phosphenes, appear at the retreating

edge of the object. The spacing of these lines is shown to depend only on the frequency of

78



the current and the velocity of the retreating edge. Carpenter shows, by varying the velocity

of the moving edge and the period of the stimulus, that there is exactly one line left in the

wake of the edge for every cycle of the AC stimulus. In order for the phosphenes to appear,

movement of the dark edge is necessary. The apparatus for this experiment is shown in figure

4.0.1. Two methods of interrupting the visual field are used. The first is a rotating shutter

with gaps so that the velocity of the retreating edge can be controlled. The other method

uses an oscilloscope where a sine wave is displayed with such high frequency relative to the

time base that it appears as a moving edge. The oscilloscope was useful in controlling the

temporal relationship between the alternating current and the moving edge.

Carpenter cites [7] to claim that the phosphenes are not the result of any post-retinal

processing, but take place in the eye itself. Accordingly, we do not assume any cortical

involvement in our model. Carpenter suggests two mechanisms which may form these lines

in the retina.

Carpenter first considers the possibility that the lines are interference fringes resulting

from differences in conduction times in different parts of the retina as a result of differences

in the degree of illumination they receive [9]. The author then provides evidence why this

is not supported experimentally. He notes that if the illumination is increased, the gradient

of conduction delays would steepen and lead to a change in the line spacing. However,

the experiments show that the spacing of the lines depends exclusively on the period of

the driving stimulus and the velocity of the retreating dark edge, and so this hypothesis is

disregarded.

Carpenter’s second hypothesis is the following: The lines represent nodes, separating

areas of the retina that are responding in antiphase to each other. The effect of a sudden
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Figure 4.0.1: The experimental apparatus. The subject views a uniformly lit object plane.

When the uniformly lit visual field is broken by a retreating edge the subjects report parallel

lines, or phosphenes, in its wake.
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Figure 4.0.2: The lines, as reported by subjects. Immediately following the sweep of the bar

parallel lines appear. As time progresses these line are perceived to move around. The lines

never cross through one another, instead forming loops whenever they converge.
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increase in illumination is to give an extra jolt to the system, sufficient to start a tran-

sient oscillation at the driving frequency. Assuming this hypothesis, the retina is divided

into regions firing in antiphase with neighboring regions, though each is phase locked with

the driving stimulus. The lines witnessed are the boundaries separating clusters firing in

antiphase with one another. This is the hypothesis we explore in the present chapter.

A model of these experiments was presented by Willis in [54]. In his paper, the author

used a model with two fixed points to represent regions of phase. The author considers a grid

of H-cells (horizontal cells), each associated with a group of R-cells that it makes synaptic

contact with. In his model it is assumed that the applied alternating current induces the

following:

1. The interaction between an R-cell (receptor cell) and the H-cell (horizontal cell) at the

corresponding point is modified in such a way that the system admits two distinct limit

cycles.

2. Interactions between R-cell groups and H-cells at neighboring points are modified by the

component of applied current parallel to the retinal surface. The current can induce

transitions between the limit cycles in such a way as to produce patterned shifts in the

line phosphenes.

The author uses a linear system where the R receive a tonic excitation, and the H cells

receive a tonic inhibition. R and H cells communicate with each other synaptically according

to the system

(4.1)









R′

H ′









=









1

−1









+









−α −β

β −α

















R

H








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Where α and β are positive parameters. α is the strength of the negative feedback that both

H and R cells are subject to. β is the strength of the interaction between an H cell and the

corresponding R cell. In Willis’ paper, it is assumed that the two interactions are equal and

opposite, so that α = β.

Now, if the effect of synaptic excitation or inhibition on H is reversed, the system becomes

(4.2)









R′

H ′









=









1

−1









+









−α −β

−β −α

















R

H









The system described by (4.1) has damped oscillatory solutions that converge to a fixed

point. The system described by (4.2) has two stable fixed points (when constrained by the

conditions 0 ≤ R ≤ Rmax and 0 ≤ H ≤ Hmax)

In Willis’ model, the boundaries are determined by the locations where the system

switches states. The linear systems used are somewhat artificial since the steady state

behavior is a result of domain restrictions. The model that we present is more similar to a

spiking model. The machinery that we use to simulate the creation of the lines is supported

by experimental results.

In this chapter, we assume that the alternating current excites a population of retinal

cells. For a stimulus of appropriate strength and frequency the cells can only fire on every

other cycle of the stimulus and are hence 1:2 phase locked with the stimulus. This creates

a bistability. A cell in an uncoupled network could fire on either the odd or even cycles of

the current. In [13], it is shown experimentally that the salamander retinal cell response to

periodic pulses of light yields this phase locking. They also perform electroretinograms on

humans. The authors chose to look at the physiology of the salamander retina since their
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eyes are similar in structure to that of humans. The authors find that the photoreceptors

are capable of 1:1 phase locking with the stimulus but that the ganglion cells follow 1:2.

This suggests that the 1:2 phase locking occurs between the photoreceptors and the ganglion

cells.

In our model, we suggest that the horizontal cells fire 1:2 with the stimulus. These

cells are coupled with gap junctions. Because gap junctional coupling can alter the stability

properties of the resting states, or phase locked states, we use biased strength of coupling to

initiate the movement of the phosphenes. This is analogous to heterogeneities in the strength

of interaction between retinal cells.

In the second part of this chapter we consider the following evolution equation

(4.3)
∂u

∂t
(x, t) = H(u(x, t)) + c

∫ ∞

−∞

w(x − y)D(u(x, t) − u(y, t))dy

where u :
� × (0,∞) → �

. The function H is continuously differentiable and periodic with

period 2a. Additionally, H satisfies

H(0) = H(a) = 0

H ′(a) = β < 0.

H ′(0) > 0

The interaction function, w(x), is an even and positive function that decreases as the argu-

ment gets farther from zero. We also normalize so that
∫

w = 1. The function D, like H, is

periodic, with twice the period of H. In addition we require that D′(0) < 0, D(0) = 0 and

D be continuous on the entire real line.
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This equation was developed as a reduced version of the full model for the experiments.

The local dynamics are bistable. For the full model, the attractors are a pair of phase locked

solutions. For the reduced model the attractors are the locations where H vanishes and has

a negative first derivative. The coupling, like the full model, admits uniformity as a locally

stable solution.

This analysis of this equation is similar to the work in [5, 6]. We prove the existence and

stability of stationary solutions that are not continuous under conditions on the parameters

and the functions H and D. We describe a mechanism that results in traveling wave solutions

when the stationary solutions do not exist.

4.1 THE MODEL

As described in the introduction, we model the cells responsible for the phosphenes as cells

able to produce spikes when a sufficient stimulus is presented. We use an integrate and

fire model where the spikes are captured by a reset, an artificial jump discontinuity in the

solution. The applied current will be represented by a time dependent sinusoidal.

Carpenter’s hypothesis suggests that the lines are divisions between regions that are out

of phase with one another. We accomplish this by choosing a parameter regime such that

each oscillator has as a solution phase locked 1:2 with the driving current. The existence

of one of these phase locked solutions implies the existence of another, since the network is

identical during the ’odd’ and ’even’ cycles. The second phase locked solution is simply a

translate of the first.
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In our model, an individual cell is governed by the system

(4.4)
dx

dt
= −x − z + A sin

(

2πt

T

)

(4.5)
dz

dt
= −z

τ

The variables x and z are real. The parameter A is the amplitude of the driving stimulus,

and T is the period. We assume that both A and T are positive. The driving stimulus is

the analog to the alternating current in the experiments. The reset criterion is given by

x(t−) = xspike → x(t+) = xreset; z(t+) = z(t−) + zjump.

For the remainder of this section, we assume the parameter values to be xspike = π, xreset =

−π, and zjump = 1.

The purpose of the refractory variable, z, is to make the 1:2 phase locking robust. In

the absence of the explicit refractory variable the oscillations reach near threshold during

every cycle of the driving current. When a solution to an uncoupled cell is found explicitly

it can be shown that the desired behavior of 1:2 locking is present. Nevertheless, we wish

to use numerical methods when the network is coupled. Small numerical inaccuracies may

cause undesired resets in the coupled network, where an explicit solution is not possible, and

so the refractory variable is used to keep the nodes away from threshold if they should not

spike on a particular cycle.

We now try to find values of the parameters that result in the desired phase locking

characteristics. Explicit solutions to the system (4.4)- (4.5) are possible, however it is not

known what the phase relationship is between the variable x and the driving current at the
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time when the oscillator resets. To remedy this, we shift the stimulus so that we can assume

that the reset criterion is met at t = 0. We write (4.4) as

(4.6)
dx

dt
= −x − z + A sin

(

2π(t − ti)

T

)

with the initial condition x(0) = −π, the reset value of x. The value of ti is the time during

a cycle of the stimulus when the system resets.

Equation (4.5) can be solved explicitly, given an initial condition. We denote this initial

condition by z0 and rewrite equation (4.6) as

(4.7)
dx

dt
= −x − z0e

−t/τ + A sin

(

2π(t − ti)

T

)

The value of z0 is easily obtained by solving the equation

z0 = z0e
−2T/τ + 1

Substituting this into the ODE (4.7) and solving for x(t) yields the following expression

(4.8) x(t) = e−t

(

− z0e
t−t/τ

1 − 1/τ
+ Aet

(

−ω cos(ω(t + ti))

1 + ω2
+

sin(ω(t + ti))

1 + ω2

))

+ Ce−t

where ω = 2π
T

. C is determined by the initial condition x(0) = −π. We wish to find

parameter values such that x(t) < π for t < 2T and x(2T ) = π. To find the value of ti that

satisfies the phase locking conditions, we construct a map

(4.9) tin+1 = tin + f(tin, z0n)mod(T )

(4.10) z0n+1 = z0n exp

(

−f(tin, z0n)

τ

)

+ 1
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Figure 4.1.1: Left Panel: Bifurcation diagram for the map (4.9)- (4.10) as A varies. The

parameter values used in this map are T = 10 and τ = 20. The marked region is the region

where the refractory variable resets to the value corresponding to 1:2 phase locking. Right

panel: The limit set diagram for the values of ti. The values of ti corresponding to phase

locked solutions are given by the intersection of the dark line and the dotted line.
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Figure 4.1.2: The phase locked solutions. Parameter values are T = 10, τ = 20, and A = 4.5.

The stimulus is also shown, scaled to fit. There are two phase locked solutions, the second

a tranlate of the first.

The function f is the time of the next reset. The value of this function is obtained by solving

equation (4.8) for the first value of t where x(t) = π. Figure 4.1.1 is a bifurcation diagram

that shows the limit sets of the map defined by (4.9) and (4.10). From the figure, one can

see that there is an interval in A such that the system resets once for every two cycles of the

driving stimulus. Figure 4.1.2 shows a pair of phase locked solutions, each a translate of the

other.

For the remainder of this section we will assume that the parameter values lie in the 1:2

phase locked regime. The pair of phase locked solutions create bistability for each cell. Given

an initial condition, the corresponding solutions will converge to one of these. The basin of

attraction for each of the solutions will have the same measure, since they are translations

of one another.

According to Carpenter’s hypothesis, it is possible that the phosphenes correspond to
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the boundaries separating regions firing out of phase with one another. These regions are

formed by the passing of a light blocking object. We will model the moving edge as a brief

inhibition that passes over the grid.

4.1.1 Creating the Boundaries

We model the mechanism responsible for the line creation using a traveling inhibitory term.

We write this as

(4.11) bar(i, t) =















−d if i/v + T0 < t < i/v + T0 + W

0 otherwise

The index i is the node. The parameter T0 is the time when the bar begins the pass through

the visual field. W is the amount of time each node is inhibited and v is the velocity of the

moving edge. The parameter d is the strength of the inhibition. The evolution of a single

node is given by

(4.12)
dxi

dt
= −xi − zi + A sin

(

2πt

T

)

+ bar(i, t)

(4.13)
dzi

dt
= −zi

τ

In order to obtain results similar to those reported by subjects in the experiments, the

value of W must be sufficiently large. The action of the inhibition is to cause certain

oscillators to leave the basin of attraction of the pre-sweep solution and enter the basin

corresponding to the other attractor. The passage through threshold is not immediate, and

so there is a minimum amount of time that the oscillator is exposed to the inhibition that
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would enable it to switch phases. In addition, Carpenters subjects reported that the lines

are evenly spaced. This suggests that the amount of time that each node is exposed to the

inhibition must be sufficiently long to negate any pre-inhibitory behavior. The behavior of

each node after the inhibition has passed will be a function of the time when the inhibition

is removed. Since the difference of time between the introduction of the inhibition and its

removal is constant, we can plot the switching behavior of a node as a function of the time

during the stimulus when the inhibition is first introduced. Figure 4.1.3 shows this plot.

We now consider a line of oscillators where each node is governed by equations (4.12)-

(4.13). Figure 4.1.4 shows the behavior of the uncoupled network as the bar sweeps. This

figure verifies that for each cycle of the driving stimulus there is exactly one boundary

separating regions that reset out of phase with one another.

We have shown that our integrate and fire model can produce the boundary creation

results obtained by Carpenter experimentally. For a sufficiently long inhibition we obtain

equally spaced lines and the spacing has the correct dependence on both the stimulus period

and the velocity of the sweep. Now, we couple the oscillators together to obtain the two

dimensional images and movement reported by Carpenter’s subjects.

4.1.2 Movement of the Phosphenes

Perhaps the most interesting finding in Carpenter’s experiments is the movement of the

phosphenes. The movement appears random, but there is some structure in how they move

as a whole. There are three ’rules’ that the phosphenes appear to obey:

1. Neighboring phosphenes show a tendency to move in a similar manner. That is, if a

given line is bulging to the right, then it is likely that a neighboring line will bulge in the
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Figure 4.1.3: The binary function s(t). The horizontal axis is the time during a period of an

oscillation of x when the inhibition is introduced. For concreteness, tinhibit = 0 corresponds

to the time when the stimulus is zero and increasing. For this figure, T = 10 and because

we are in the 1:2 phase locking regime we plot over two periods of the stimulus. The vertical

axis is the value of a binary function s(tinhibit). s(tinhibit) = 1 when phase of the oscillator

is the same after the inhibition as it was previous. When s(tinhibit) = −1, the oscillator has

exited the basin of attraction corresponding to the original oscillation and was attracted to

the shifted, second oscillation. The values in this plot are for W = 30.
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space (index 0−99)

time

v=1 v=4v=2

Figure 4.1.4: Three simulations of a line of oscillators inhibited by a sweep of the bar function.

In each panel the horizontal axis is the spatial index, and the vertical axis is time, increasing

from top to bottom. The velocity of the sweep is above each panel and measures the speed

of the movement of the bar in index units per time. In Carpenter’s experiments, one line

was seen for every cycle of the stimulus. In this figure T = 10. For v = 1 there are ten cycles

of the stimulus, and should be 10 lines. Similarly, for v = 2 and v = 4 there should be 5

and 2-3 respectively. These simulations confirm that our model behaves appropriately. In

all three panels W = 30 and d = 2.
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same direction. By no means is this an unbreakable rule, lines do occasionally collide

with one another, but it is a noted behavior in the experiments

2. The lines never cross through one another. Instead, they combine to form loops.

3. A line never breaks apart unless it meets another line.

A visual description of the second item is shown as figure 4.1.5, and a prohibited scenario is

depicted in figure 4.1.6. As will be seen, localized synchrony is a stable solution. In other

words, when a node is on the interior of a region of oscillators firing in synchrony there is

no possibility that this node will spontaneously assume the opposite phase. Only nodes on

the boundary are capable of switching phases. For this reason, the second and third items

above are already incorporated into this model.

Our movement mechanism is relatively simple. Suppose there are two regions, region

A and region B, which neighbor each other and contain only oscillators in phase with the

others in the regions. Consider the group of oscillators right on the boundary. If some

of the oscillators in region B were to synchronize with those in region A, the line would

move, because the newly synchronized clusters are now in region A, and so the boundary

has moved. Similarly, the line could move the other way if some of the oscillators in region

A synchronize with their neighbors in region B. Furthermore, if some of the oscillators in

region A synchronize with those in region B, and some of those in B synchronize with those

in A, the line moves in one direction in some spatial locations, and in another direction at

another location. Figure 4.1.7 shows the transition of a line.

4.1.2.1 The Coupling Terms The coupling has to have a number of characteristics,

inspired by the movement ’rules’ stated in the previous subsection. The second and third
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time

time

Figure 4.1.5: Meeting of the phosphenes. The lines do not cross one another, but instead

annihilate one another, forming new patterns such as loops.
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time

Figure 4.1.6: The lines cross, but remain intact after the collision. This scenario is not

possible.

BA

A B

1

2

A B

Figure 4.1.7: The movement of a phosphene. The leftmost panel shows the regions A and

B initially. The middle panel shows regions, 1 and 2, that are about to switch phase by

synchronizing with regions B and A respectively. The resulting line is shown in the right of

the figure. The arrows indicate passage of time.
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item make it essential that the coupling cause synchrony to be a locally stable solution.

Also, because we are dealing with the phase of an oscillator, we would like the coupling to

be periodic with period 2π. The coupling we chose has the form

(4.14) cfd sin(xd − xi,j)

where d = {up, down, left, right} (eg. fup = fi,j−1). The coefficients fd are positive and

discussed in detail in the next subsection. In this chapter we restrict ourselves to the case

of nearest neighbor coupling. The parameter c is always positive and determines the linear

strength of the coupling, and is the same for each node. The evolution of the nodes in the

coupled network is governed by the equation

(4.15)
dxi,j

dt
= F (xi,j) + c

∑

d

fd sin(xd − xi,j)

4.1.2.2 The Coupling Coefficients fd The first rule of movement stated previously

was not a hard-and-fast rule, but more of an observed trend. Before we can describe how

we incorporate this rule into the simulation, we need to explain the basic mechanism of

movement we have chosen.

Suppose we have one oscillator, A, with four neighbors, Nj, j = 1, .., 4 (figure 4.1.8).

Suppose that N1 and N2 are firing synchronously (with one another), and N3 and N4 are

firing at the other phase. The phase that A synchronizes to depends on the relative strengths

of the coupling. For example, suppose that fup + fleft >> fright + fdown. Then, oscillator

A will synchronize with N1 and N2. If the relative difference between coupling strengths is

not so high, there will be an intermediate phase for A, which will in turn alter other nearby

oscillators. Eventually, oscillator A will be on the interior of a region and will synchronize
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A

N1

N2

N3

N4

fup

fleft
fright

fdown

Figure 4.1.8: coupling diagram

with the others there. The phosphenes are represented by the boundary of the regions of

in phase oscillators, where they temporarily assume a parameter dependent (relative sizes

of fd), and neighbor dependent, phase until they are enveloped into the interior of a region.

Once this process is complete, the line (boundary) will have moved.

Because the direction of the movement depends on the relative coupling strengths, we

wish to structure the coefficients, fd, spatially. Suppose we have a single line of oscillators.

If, for every oscillator, fright > fleft we expect each to synchronize with its neighbor to

the right, thus moving the lines left. Thus, to implement the first item from early in this

section (nearby lines have a tendency to move in the same direction) we define regions of

monotonicity. Thus, there will be spacial intervals where fleft > fright and others where

fright > fleft. Two lines in the same region of monotonicity will move in similar directions.
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This is the spacial structure of f . A difficulty is that it is not clear how many ’flat spots’

there should be in f . In other words, how many times in the domain should the sign of

fright − fleft change? When simulating, we changed the monotonicity at most 3 times in

both the vertical and horizontal directions. The implementation used in the simulation code

is described in the next section.

4.1.3 Simulation

Simulations were done using Runge-Kutta fourth order integrator, with a constant time

step. The reset is accomplished by setting xi,j(tk) = −π and zi,j(tk) = zi,j(tk) + 1 whenever

xi,j(tk) > π. No interpolation is done, so the resets will always occur at a multiple of the

time step. The time step used is ∆t = 0.01.

All simulations are done on a 100x50 oscillator grid. The coupling strength array, fi,j

was determined as follows:

1. Choose, randomly, 3 indices in the horizontal domain (h1, h2, h3), and 3 more in the

vertical domain (v1, v2, v3). Assume that h1 < h2 < h3 and v1 < v2 < v3. The choice

of 3 set indices is motivated by figures in [9]. This implementation can be extended to

incorporate any number of set nodes, up to the number of nodes present in the grid.

2. Define two arrays, H and V , (for horizontal and vertical) with the appropriate number

of elements. For our purposes H has 100 elements (the width of the grid) and V has 50

elements (the height of the grid).

3. Assign to the array elements H(1), H(h1), H(h2), H(h3) and H(100) random values

between 0 and 1.

4. The grid is now divided into rectangles. Divide each of these rectangles into two right

99



triangles. In the simulations presented here, the diagonal goes from the top left to the

lower right.

5. Using the three corners of the triangles, compute the value at the indices inside each

triangle according to the plane the corner values define (see figure .

This will produce the array f with regions of monotonicity.

Simulations were carried out using some FORTRAN code, using calls to LAPACK and

BLAS to do the vector operations in the RK integrator. The graphical output was produced

using the PGPlot package.

Figure 4.1.10 shows output from a sample run of the simulation.

4.2 A REDUCED MODEL

In this section we consider a reduced model analogous to the full model presented in the

first part of this chapter. This model captures two important aspects of the full model.

First, the model is intrinsically bistable. The uncoupled system will converge, pointwise,

to one of two solutions depending on which basin of attraction the initial conditions lie in.

Secondly, sufficiently strong coupling will cause the network to assume a uniform profile.

This is analogous to synchrony in the full model.

The equation that we consider is

(4.16)
∂u(x, t)

∂t
= H(u(x, t)) + c

∫ ∞

−∞

J(x − y)D(u(x, t)− u(y, t))dy

where H satisfies

H(−1) = H(0) = 0
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B C

A D

I

II

Figure 4.1.9: A diagram that shows how the biased coupling is determined for the simula-

tions. The value of the function is chosen randomly at the vertices A,B,C,D. The rectangle

is divided into two triangles. The value of the coupling function for points in these triangles

is determined using a linear interpolation of the three vertices that form the triangle. For

example, if a node lies in the region marked II, the value of the relative coupling strength at

that node is determined by the plane that crosses the determined points at B,C, and D.
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A B

C D

E F

Figure 4.1.10: Simulation of the integrate and fire model on a 100x50 oscillator grid. Each

panel shows the field after a set increment of time. The variable plotted is z, the refractory

variable. In panel A, the bar is about to complete the pass. Lines (or regions) have formed

on the left edge and have begun to move. In panels B,C, the lines are clearly defined and

moving. In panel D, synchronous regions ’poke holes’ through a region in antiphase, forming

two loops. Panels E F show two of the loops annihilating themselves as the region that

defines them collapses. Parameter values (for equation (4.15)) are v = 1.3, A = 4.7, T = 10,

τ = 20, d = −2, W = 30, c = 7.
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H ′(−1) < 0

H ′(0) > 0

Also, H is continuously differentiable and periodic with period 2. The choice of 2 is for

simplicity, and one can obtain identical results for any value of the period of H. The

function D is periodic with period 4 (twice the period if H for the general case) and satisfies

D(0) = 0

D′(0) < 0

In addition, we require that D be continuously differentiable so that it satisfies a lipshitz

condition on the entire real line. The parameter c is real and positive. The interaction

function J satisfies

J > 0

∫

� J(x)dx = 1

J(x) = J(−x)

In [5], the authors prove the existence and stability of stationary solutions to

(4.17) ut = −u − λf(u) + J ∗ u

where λ > 0 and the function f is bistable. The authors prove that, under conditions on the

parameters, there exist stable steady state solutions that are discontinuous. In this chapter

we prove the existence of similar solutions to equation (4.16).
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We first address the initial value problem. Suppose we have an initial condition u(x, 0),

defined for all x ∈ �
. Since D is continuous and periodic it is bounded, and so the integral

∫

� J(x − y)D(u(x, t) − u(y, t))dy

is defined for any x ∈ �
and is bounded by ±||D||∞, due to the normalization of J . Similarly,

the function H is bounded so that the absolute value of the right side of (4.16) is bounded

by

||H||∞ + ||D||∞

For any x ∈ �
we have that

∣

∣

∣

∣

∂u

∂t

∣

∣

∣

∣

≤ ||H||∞ + ||D||∞

and so the solution will not blow up in finite time for any x ∈ �
.

In addition, since the right side of (4.16) is defined whenever u is defined, the resulting

solution u(x, t) will be a continuous function in t.

It is not necessary for u(x, t) to be a continuous function in x for a given initial condition.

A simple example to reveal this is the case c = 0. Let u(x, 0) be a continuous function in

x, which attains both positive and negative values (crosses the u = 0 axis non-tangentially

at least once). For values of x where u(x, 0) > 0 the solution u(x, t) will converge to 1 (or

2n + 1 for n ∈ � +). For x where u(x, 0) < 0, the solution will converge to a steady state

where u(x, t) < 0. Locations where u(x, 0) = 0 are invariant. The result is a solution that

is discontinuous in the variable x. We now state and prove two theorems (existence and

stability) regarding these discontinuous solutions for the case c > 0. .

We begin with the following existence theorem:
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Theorem 2 Existence of discontinuous stationary solutions

Suppose that the function H satisfies

• H is an odd function with period 2.

• H is continuously differentiable.

• H(1) = 0 and H ′(1) < 0.

• H(0) = 0 and H ′(0) > 0.

and that the function D satisfies

• D is continuously differentiable.

• D(0) = 0 and D′(0) < 0.

• D is periodic with period 4 (twice the period of H).

Let β > 0 be a number such that H ′(u) < 0 for u ∈ (1−β, 1+β) and set δ = −maxu∈(1−β,1+β) H ′(u) >

0. Set K = maxu∈

�
|D′(u)|.

Choose a measurable set M and denote the complement as M c. Assume that c is small

enough so that the following conditions hold:

(4.18)

H(1 + β) + cDMMc supx∈M

∫

Mc J(x − y)dy ≤ 0

H(1 − β) + cDMMc supx∈M

∫

Mc J(x − y)dy ≥ 0

H(−1 + β) + cDMMc supx∈Mc

∫

M
J(x − y)dy ≤ 0

H(−1 − β) + cDMMc supx∈Mc

∫

M
J(x − y)dy ≥ 0

where

DMMc = max
s∈(2−2β,2+2β)

D(s)

DMMc = min
s∈(2−2β,2+2β)

D(s)
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If −δ + 2cK < 0 there exists a solution, U(x), satisfying

(4.19) 0 = H(U(x)) + c

∫

� J(x − y)D(U(x) − U(y))dy

such that

(4.20)
U(x) ∈ (1 − β, 1 + β) when x ∈ M

U(x) ∈ (−1 − β,−1 + β) when x ∈ M c

Proof:

Let

B =















U(x)

∣

∣

∣

∣

∣

∣

∣

∣

U(x) ∈ (1 − β, 1 + β) when x ∈ M

U(x) ∈ (−1 − β,−1 + β) when x ∈ M c















and define the map

(4.21) TU(x) = U(x) + ε

[

H(U(x)) + c

∫

� J(x − y)D(U(x) − U(y))dy

]

For ε sufficiently small, the conditions (4.18) guarantee that T : B → B. Our method of

proof is to show that T is a contraction mapping. This allows us to conclude that there is a

solution of the type (4.20) that satisfies (4.19).

To simplify expressions, define the function

A(U, x) =

∫

� J(x − y)D(U(x) − U(y))dy

Let U, V ∈ B. We write

‖TU − TV ‖∞ = ‖U − V + ε(H(U) − H(V ) + A(U, x) − A(V, x)‖∞

The quantity A(U, x) − A(V, x) can be written

∫

� J(x − y)[D(U(x) − U(y)) − D(V (x) − V (y))]dy
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Because D is continuously differentiable and K is a finite number, we have that

|D(g − h)| < K|g − h|

for g, h ∈ �
. We have the inequality

‖A(U, x) − A(V, x)‖∞ ≤ ‖cK
∫

� J(x − y)(U(x) − U(y) − V (x) + V (y))dy‖∞

= ‖cK(U(x) − V (x))

∫

� J(x − y) − cK

∫

� J(x − y)(U(y)− V (y))dy‖∞

≤ cK

∫

� J(x − y)dy‖U(x)− V (x)‖∞ + cK

∫

� J(x − y)dy‖U(x)− V (x)‖∞

=

(

2cK

∫

� J(x − y)dy

)

‖U(x) − V (x)‖∞

We may write

(4.22) ‖TU − TV ‖ ≤ ‖U(x) − V (x) + ε(H(U(x)) − H(V (x)))‖ + 2εcK‖U(x) − V (x)‖

Since H ′(U) > −δ for u ∈ (1 − β, 1 + β) we have that

H(U(x)) − H(V (x)) ≤ −δ(U(x) − V (x)) ≤ 0

for x such that U(x) > V (x) and

0 ≤ H(U(x)) − H(V (x)) ≤ −δ(U(x) − V (x))

for x such that U(x) < V (x). Since the value of H(U(x)) − H(V (x)) has the opposite sign

as U(x) − V (x) it follows that

(4.23) ‖U(x) − V (x) + ε(H(U(x)) − H(V (x)))‖∞ ≤ ‖U(x) − V (x) − εδ(U(x) − V (x))‖∞
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We may re choose ε small enough so that εδ < 1. Substituting (4.23) into the right side of

(4.22) gives

‖TU − TV ‖∞ ≤ (1 − εδ)‖U(x) − V (x)‖∞ + 2εcK‖U(x) − V (x)‖∞

‖TU − TV ‖∞ ≤ (1 − ε(δ − 2cK))‖U(x) − V (x)‖∞

and so if δ > 2cK then T is a contraction mapping and hence there is a steady state solution

to (4.16).

The quantity δ − 2cK is just a comparison of the attraction to the fixed points of the

intrinsic system and the strength of the coupling which synchronizes the network. If the

fixed point ’wins’ then the solution will not leave the β neighborhood of 1, where H = 0.

Similarly, if the coupling overwhelms the attraction to the fixed point then the solutions will

leave the β bands as they approach a more uniform profile.

We can now state the following theorem:

Theorem 3 Linear Stability

Assume that for a set M , a number β and a parameter c the conditions in Theorem 2 are

satisfied. The resulting stationary solution is linearly stable.

Proof: Let U be the steady state solution of (4.16) shown to exist. Let u(x, t) = U(x) +

w(x, t). The function w(x, t) satisfies the following

• w(x, 0) is bounded and small for every x ∈ �
. It is a perturbation to the steady state

solution U(x) for each x.

•
∫

J(x − y)w(y)dy exists and is finite for any x ∈ �
.
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Substituting u(x, t) = U(x) + w(x, t) into (4.16) gives

w(x, t)t = H(U(x) + w(x, t)) + c

∫

� J(x − y)D(U(x) + w(x, t) − U(y) − w(y, t))dy

We expand the right side about U(x) and separate terms that are linear in w to obtain

w(x, t)t = H(U(x)) + w(x, t)H ′(U(x))

+c
∫ �

J(x − y)[D(U(x) − U(y)) + (w(x, t) − w(y, t))D′(U(x) − U(y))dy + O(w(x, t)2)

We are concerned with the linear stability and will omit the higher order terms in w. We

may rewrite the equation as

w(x, t)t = w(x, t)H ′(U(x))

+c
∫ �

J(x − y)(w(x, t) − w(y, t))D′(U(x) − U(y))dy

(4.24)
w(x, t)t = w(x, t)H ′(U(x)) + c

∫ �
J(x − y)w(x, t)D′(U(x) − U(y))dy

−c
∫ �

J(x − y)w(y, t)D′(U(x) − U(y))dy

Now consider how the maximum of w evolves. We know that w(x, 0) is bounded. We show

that under the existence conditions if w(x, t) is bounded for any t ≥ 0 then w(x, t) will

remain bounded and decay to zero for each x ∈ �
. We have the following inequality:

∣

∣

∣

∣

c

∫

� J(x − y)w(y)D′(U(y) − U(x))dy

∣

∣

∣

∣

≤ cK||w(x, t)||∞

This implies that

d

dt
‖w(x, t)‖∞ ≤ (−δ + cK) ‖w(x, t)‖∞ + cK‖w(x, t)‖∞

d

dt
‖w(x, t)‖∞ ≤ (−δ + 2cK) ‖w(x, t)‖∞
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Since −δ + 2cK < 0 (Theorem 2), we have that w → 0 pointwise since the maximum of

w decays to zero. Hence, sufficiently small perturbations to the steady state solution will

decrease to zero. It follows that the steady state solution proved to exist is also stable

(linearly).

It is important to realize that the theorems 2 and 3 provide sufficient conditions for stable

stationary solutions, but they are by no means necessary conditions. The approximations

used in the proof can be somewhat loose, and solutions of the type that we are looking for

can exist and be stable when the conditions on parameters and function H and D are not

satisfied.

Notice that the only restrictions on J for the existence of these solutions is the normal-

ization and that J > 0. Suppose that the parameters are such that there are no solutions

of the type guaranteed by theorem. We suspect that this will cause the network to synchro-

nize. Uniform solutions will not remain near u = 0 since this is unstable for the uncoupled

system. If the tendency towards synchrony is great enough the long term behavior of the

network on the entire real line will be a synchronous solution at one of the stable steady

states, u(x) = ±1. This results in front solutions to (4.16).

The only requirements on the function D are D(0) = 0 and D′(0) < 0, and so this

function can determine the direction of propagation, and will if the interaction function J is

even. Similar to the directional bias used in the full model, a shift in the interaction function

results in biased coupling. We hypothesis that if this shift is sufficiently large the direction of

propagation will depend on which direction the interaction function is shifted. The amount

that J needs to be shifted to determine the direction of propagation depends on the shape

of the graph of D.
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We present an example of application of theorems 2 and 3. We consider the system where

D(u) = − sin
(

πu
2

)

and H(u) = sin(πu). The existence of stationary solutions is trivial since

(4.25) U(x) =















1 when x ∈ M

−1 when x ∈ M c

is always a solution since D(±2) = 0. For this case β = 0, δ = −π, and K = − π
2
. The

conditions (4.18) are satisfied trivially. Theorem 3 guarantees the stability of the solution

(4.25) whenever c < 1. As previously noted, this is a sufficient condition for stability, but

not necessary. The trivial solution does destabilize when the coupling is sufficiently strong.

Profiles of solutions to this system are drawn in figure 4.2.1. For the lower ranges of c shown

there is a stable stationary solution different from (4.25).

In the rightmost panel of figure 4.2.1 the solution converges to a continuous function.

The solution also satisfies

0 = H(U(x)) + c

∫

� J(x − y)D(U(x) − U(y))dy

however it is not of the type shown to exist by theorem 2. This solution is stationary because

of symmetry about the values of x where u(x, t) vanishes. This symmetry can be destroyed

by shifting the interaction function, J , either left or right. Shifting left will result in a

stronger influence of neighbors to the left. The result is a front the travels to the right.

Similarly, shifting the function J right provides a mechanism for left-moving front solutions.

Simulations of the network where J is shifted to the right are shown in figure 4.2.2.
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Figure 4.2.1: Profiles for steady state solutions for different coupling strengths. For small

coupling coefficients the solutions lie near the fixed points of the uncoupled system. For

larger coupling strengths the network will approach a more uniform profile. In the right

panel the coupling is strong enough that the solution is continuous. The initial conditions

for each of figures are slight perturbation from the known stationary solution U(x).

112



c=3c=1

Figure 4.2.2: The waves resulting from biased coupling. In the left panel the stationary

solutions continue to exist with bias coupling. In the right panel, the stationary solutions

are destabilized. A left shift in J causes the network to bias to the left, causing a propagating

wave. The long term solution is a uniform profile u = −1.
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4.3 SUMMARY

In this chapter, we present a pair of models. The first is a network of integrate and fire nodes

driven by a sinusoidal stimulus that is periodic in time and constant in space. The model

is motivated by experiments performed by R.H.S. Carpenter. Our network is a rectangular

grid of nodes with nearest neighbor coupling. In the absence of coupling each node is phase

locked 1:2 with the driving stimulus. There are two such solutions, and the boundaries

separating regions out of phase with one another represent the phosphenes reported by

Carpenter’s subjects. These lines are formed by passing a traveling inhibition through the

network, causing half of the nodes to switch phases. The traveling inhibition is analogous

to the retreating edge in the experiment. The coupling that we use encourages synchrony

in the network. This causes a tug of war between the intrinsic dynamics of the system and

the coupling architecture. Movement of the lines is modeled by coupling sufficiently strong

to cause nodes near a phase boundary to leave the original basin of attraction and switch

phases. Random bias in the coupling controls the movement of the boundaries.

The model demonstrates a mechanism suggested by Carpenter as a reason behind the

creation of the phosphenes. The integrate and fire system was chosen for its simplicity,

allowing us to determine parameter regimes that induce the desired phase locking. The

coupling that we use is nearest neighbor. The type of coupling used could be expanded to

include other configurations such as all to all coupling, where the strength of the interactions

decays with distance. This model is an extreme simplification of the circuitry present in the

retina. For example, the model does not take into consideration the different types of cells,

such as H-cells and R-cells. We assume spatial independence of the driving stimulus, where
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the action of the current on an individual cell may only involve a certain component, as

described in [54]. Finally, the lines in Carpenter’s experiment eventually fade away. This

is impossible using our mechanism, since there is nothing in our model to associate with

intensity.

The second model analyzed is an evolution/convolution network that captures the es-

sential characteristics of the full model. The intrinsic bistability is represented by a pair of

fixed points that are stable for the uncoupled system. As in the full model, the coupling

encourages synchrony in the network. The interaction between the intrinsic dynamics of the

network and the architecture of the coupling leads to various spatio-temporal patterns. We

prove the existence and stability of discontinuous, time invariant solutions for sufficiently

weak coupling. Numerically we suggest that biased coupling can cause waves to propagate

when the coupling is sufficiently strong to eliminate the steady state solutions.
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5.0 DISCUSSION

In this dissertation three coupled networks are analyzed. In each, the interplay between

the intrinsic dynamics and the properties of the coupling result in various spatial patterns.

In the first chapter of this work, we explore a system where the oscillations at each spatial

location will decay to zero in the absence of coupling. The equation that we use is the normal

form of a degenerate Hopf bifurcation, where the coefficient that determines the criticality

of the resulting periodic solutions is zero. The coupling is of the correct order so that the

degeneracy is removed. Under conditions on the parameters there are a pair of periodic

solutions, as well as a rest state. It is shown that the outer periodic is linearly stable for

sufficiently small wave numbers. This implies a region of bistability. We analyze solutions

connecting the stable states. We show that, in the absence of twist, traveling waves exist

and are stable. Numerical simulations suggest that with a nonzero phase gradient the waves

continue to exist, provided the network along the wave front does not desynchronize too

much. If the network does sufficiently desynchronize the effective coupling strength is too

weak for the front to propagate. Locations that are already excited will remain on or near

the outer periodic and the result is regions of persistent activity, or breathers.

There are a number of open problems in this chapter. The existence and stability of

the breathers is not proved. We do unveil a lateral inhibition mechanism that, in other
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scenarios, is known to generate localized activity. The inhibition is a result of a deviation from

synchrony. For large phase gradients the effective interaction function can be approximated

by a structure similar to a Mexican hat, where oscillations are excited by those nearby

and inhibited by oscillations further away. A possible future direction is to determine,

based on the parameters and initial conditions, the maximum width of a pulse. This would

involve formulating a criterion for recruitment. When this criterion is not met the bump will

propagate no further.

Similarly, there is no proof of existence for the waves when q 6= 0. We rely on continuity

with respect to parameter changes, however the waves continue to exist for q well away from

zero. A continuity argument is insufficient for such a case.

Lastly, a formal shooting argument could be made to verify the existence of traveling wave

solutions for the q = 0 case when ε = 0. The system of ODEs in traveling wave coordinates

appears to have the desired heteroclinic, however we only suggest this numerically.

The second chapter is an exploration of a canard mechanism that contradicts widespread

assumptions of excitatory synaptic coupling. In a typical scenario, excitatory coupling causes

a network of type II neurons to synchronize. Once the network is synchronized it will either

continue to spike or die, depending on whether the applied current is sufficient to pass

threshold. In the case that the applied current is superthreshold, firing rate should increase.

In a network of Hodgkin-Huxley neurons the oscillators synchronize, as expected. However,

the amount of time that the oscillation spend in the silent phase is much longer than in the

uncoupled network. The usual slow passage calculation does not provide an explanation for

the long interspike intervals. A trapping mechanism that is the result of interplay between

the intrinsic dynamics of a cell and the decay rate of a synaptic variable yields a curve that
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acts as an attractor. Variational analysis along this curve provides a superior approximation

of the local behavior and correspondingly a mechanism for the long ISIs.

The mechanism is unlike other canard scenarios because it is robust in the sense that

it exists for a wide range of parameter values. An open problem would be to determine

if a similar mechanism exists in the general canard configuration [15, 52]. Actual canard

trajectories typically do not coincide with the critical manifold exactly except in the singular

limit, where the system is decomposed into slow and fast subsystems. Revealing the general

trapping mechanism that not only holds the solutions near the critical curve, but holds it

away, would be a useful result.

The third problem presented is a network that is intrinsically bistable, and the coupling

causes the network to synchronize. There are two models presented. The first is a network

of integrate and fire oscillators where the attractors are a pair of solutions phase locked

with a driving stimulus. We compare the patterns that solutions to this network form to

those reported by subjects in an experiment preformed by R.H.S. Carpenter. The second

model is an evolution/convolution equation that captures the basic properties of the full

equations: it is intrinsically bistable with coupling that causes synchrony. The resulting tug

of war results in stable steady state solutions when the coupling is sufficiently weak and,

for stronger coupling, traveling waves connecting the stable states. We present proof for the

existence and stability of the steady state solutions.

The model that we present to model the experiment of Carpenter is sufficient to recreate

the pattern reported by subjects. However, the model is an extremely crude representation

of the physiology of the retina. A more elaborate model that more closely represents the

communication in the retina and demonstrates the same results would be an extremely useful
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result.

An open problem regarding the reduced model is the existence and stability of traveling

wave solutions when the interaction independent stationary solutions no longer exist.
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APPENDIX

PARAMETERS AND GATING FUNCTIONS FOR THE HH EQUATIONS

The gating functions for h in equation (3.3) are

αh(V ) = 0.07 exp (−(V + 65)/20)

βh(V ) = 1/ (1 + exp(−(V + 35)/10))

The variable m is slaved to V

m =
αm(V )

αm(V ) + βm(V )

where

αm(V ) =
0.1(V + 40)

1 − exp(−(V + 40)/10)

βm(V ) = 4 exp(−(V + 65)/18)

The variable n is slaved to h by

n = max(.801 − 1.03h, 0)

The synaptic recovery function, α(V ), is given by

α(V ) =
α0

1 + exp(−V/Vshp)
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Parameter values are VNa = 50, Vk = −77, VL = −54.4, gNa = 120, gK = 36,gL = 0.3,C =

1,I0 = 13, Vshp = 5, gsyn = 2, Vsyn = 0, and α0 = 2.

The units for the voltages are mV , the conductances have units mS/cm2, and the current

has units µA/cm2.
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