1,393 research outputs found

    Signal Modeling for Two-Dimensional Image Structures and Scale-Space Based Image Analysis

    Get PDF
    Model based image representation plays an important role in many computer vision tasks. Consequently, it is of high significance to model image structures with more powerful representation capabilities. In the literature, there exist bulk of researches for intensity based modeling. However, most of them suffer from the illumination variation. On the other hand, phase information, which carries most essential structural information of the original signal, has the advantage of being invariant to the brightness change. Therefore, phase based image analysis is advantageous when compared to purely intensity based approaches. This thesis aims to propose novel image representations for 2D image structures, from which useful local features can be extracted, which are useful for phase based image analysis. The first approach presents a 2D rotationally invariant quadrature filter. This model is able to handle superimposed intrinsically two-dimensional (i2D) patterns with flexible angles of intersection. Hence, it can be regarded as an extension of the structure multivector. The second approach is the monogenic curvature tensor. Coupling methods of differential geometry, tensor algebra, monogenic signal and quadrature filter, we can design a general model for 2D structures as the monogenic extension of a curvature tensor. Based on it, local representations for the intrinsically one-dimensional (i1D) and i2D structures are derived as the monogenic signal and the generalized monogenic curvature signal, respectively. From them, independent features of local amplitude, phase and orientation are simultaneously extracted. Besides, a generalized monogenic curvature scale-space can be built by applying a Poisson kernel to the monogenic curvature tensor. Compared with other related work, the remarkable advantage of our approach lies in the rotationally invariant phase evaluation of 2D structures in a multi-scale framework, which delivers access to phase-based processing in many computer vision tasks. To demonstrate the efficiency and power of the theoretic framework, some computer vision applications are presented, which include the phase based image reconstruction, detecting i2D image structures using local phase and monogenic curvature tensor for optical flow estimation

    Elliptical Monogenic Wavelets for the analysis and processing of color images

    No full text
    International audienceThis paper studies and gives new algorithms for image processing based on monogenic wavelets. Existing greyscale monogenic filterbanks are reviewed and we reveal a lack of discussion about the synthesis part. The monogenic synthesis is therefore defined from the idea of wavelet modulation, and an innovative filterbank is constructed by using the Radon transform. The color extension is then investigated. First, the elliptical Fourier atom model is proposed to generalize theanalytic signal representation for vector-valued signals. Then a color Riesz-transform is defined so as to construct color elliptical monogenic wavelets. Our Radon-based monogenic filterbank can be easily extended to color according to this definition. The proposed wavelet representation provides efficient analysis of local features in terms of shape and color, thanks to the concepts of amplitude, phase, orientation, and ellipse parameters. The synthesis from local features is deeply studied. We conclude the article by defining the color local frequency, proposing an estimation algorithm

    Vector extension of monogenic wavelets for geometric representation of color images

    No full text
    14 pagesInternational audienceMonogenic wavelets offer a geometric representation of grayscale images through an AM/FM model allowing invariance of coefficients to translations and rotations. The underlying concept of local phase includes a fine contour analysis into a coherent unified framework. Starting from a link with structure tensors, we propose a non-trivial extension of the monogenic framework to vector-valued signals to carry out a non marginal color monogenic wavelet transform. We also give a practical study of this new wavelet transform in the contexts of sparse representations and invariant analysis, which helps to understand the physical interpretation of coefficients and validates the interest of our theoretical construction

    A discrete approach to monogenic analysis through Radon transform

    No full text
    8 pagesInternational audienceMonogenic analysis is gaining interest in the image processing community as a true signal processing tool for 2D signals. Unfortunately, it is only defined in the continuous case. We address this issue by proposing an innovative scheme that uses a discrete Radon transform based on discrete geometry. Radon domain signal processing and monogenic analysis is studied and performance is shown to be equivalent to the usual FFT-based algorithms. The advantage is that extensions to filterbanks and to higher dimensions are facilitated, thanks to the perfect invertibility and computational simplicity of the used Radon algorithm

    The Poisson Scale-Space: A Unified Approach to Phase-Based Image Processing in Scale-Space

    Get PDF
    In this paper we address the topics of scale-space and phase-based signal processing in a common framework. The involved linear scale-space is no longer based on the Gaussian kernel but on the Poisson kernel. The resulting scale-space representation is directly related to the monogenic signal, a 2D generalization of the analytic signal. Hence, the local phase arises as a natural concept in this framework which results in several advanced relationships that can be used in image processing
    corecore