5 research outputs found

    Energy Efficient Scheduling for Real-Time Systems

    Get PDF
    The goal of this dissertation is to extend the state of the art in real-time scheduling algorithms to achieve energy efficiency. Currently, Pfair scheduling is one of the few scheduling frameworks which can optimally schedule a periodic real-time taskset on a multiprocessor platform. Despite the theoretical optimality, there exist large concerns about efficiency and applicability of Pfair scheduling in practical situations. This dissertation studies and proposes solutions to such efficiency and applicability concerns. This dissertation also explores temperature aware energy management in the domain of real-time scheduling. The thesis of this dissertation is: the implementation efficiency of Pfair scheduling algorithms can be improved. Further, temperature awareness of a real-time system can be improved while considering variation of task execution times to reduce energy consumption. This thesis is established through research in a number of directions. First, we explore the applicability of Dynamic Voltage and Frequency Scaling (DVFS) feature in the underlying platform, within Pfair scheduled systems. We propose techniques to reduce energy consumption in Pfair scheduling by using DVFS. Next, we explore the problem of quantum size selection in Pfair scheduled system so that runtime overheads are minimized. We also propose a hardware design for a central Pfair scheduler core in a multiprocessor system to minimized the overheads and energy consumption of Pfair scheduling. Finally, we propose a temperature aware energy management scheme for tasks with varying execution times

    Scheduling and locking in multiprocessor real-time operating systems

    Get PDF
    With the widespread adoption of multicore architectures, multiprocessors are now a standard deployment platform for (soft) real-time applications. This dissertation addresses two questions fundamental to the design of multicore-ready real-time operating systems: (1) Which scheduling policies offer the greatest flexibility in satisfying temporal constraints; and (2) which locking algorithms should be used to avoid unpredictable delays? With regard to Question 1, LITMUSRT, a real-time extension of the Linux kernel, is presented and its design is discussed in detail. Notably, LITMUSRT implements link-based scheduling, a novel approach to controlling blocking due to non-preemptive sections. Each implemented scheduler (22 configurations in total) is evaluated under consideration of overheads on a 24-core Intel Xeon platform. The experiments show that partitioned earliest-deadline first (EDF) scheduling is generally preferable in a hard real-time setting, whereas global and clustered EDF scheduling are effective in a soft real-time setting. With regard to Question 2, real-time locking protocols are required to ensure that the maximum delay due to priority inversion can be bounded a priori. Several spinlock- and semaphore-based multiprocessor real-time locking protocols for mutual exclusion (mutex), reader-writer (RW) exclusion, and k-exclusion are proposed and analyzed. A new category of RW locks suited to worst-case analysis, termed phase-fair locks, is proposed and three efficient phase-fair spinlock implementations are provided (one with few atomic operations, one with low space requirements, and one with constant RMR complexity). Maximum priority-inversion blocking is proposed as a natural complexity measure for semaphore protocols. It is shown that there are two classes of schedulability analysis, namely suspension-oblivious and suspension-aware analysis, that yield two different lower bounds on blocking. Five asymptotically optimal locking protocols are designed and analyzed: a family of mutex, RW, and k-exclusion protocols for global, partitioned, and clustered scheduling that are asymptotically optimal in the suspension-oblivious case, and a mutex protocol for partitioned scheduling that is asymptotically optimal in the suspension-aware case. A LITMUSRT-based empirical evaluation is presented that shows these protocols to be practical

    Soft real-time scheduling on multiprocessors

    Get PDF
    The design of real-time systems is being impacted by two trends. First, tightly-coupled multiprocessor platforms are becoming quite common. This is evidenced by the availability of affordable symmetric shared-memory multiprocessors and the emergence of multicore architectures. Second, there is an increase in the number of real-time systems that require only soft real-time guarantees and have workloads that necessitate a multiprocessor. Examples of such systems include some tracking, signal-processing, and multimedia systems. Due to the above trends, cost-effective multiprocessor-based soft real-time system designs are of growing importance. Most prior research on real-time scheduling on multiprocessors has focused only on hard real-time systems. In a hard real-time system, no deadline may ever be missed. To meet such stringent timing requirements, all known theoretically optimal scheduling algorithms tend to preempt process threads and migrate them across processors frequently, and also impose certain other restrictions. Hence, the overheads of such algorithms can significantly reduce the amount of useful work that is accomplished and limit their practical implementation. On the other hand, non-optimal algorithms that are more practical suffer from the drawback that their validation tests require workload restrictions that can approach roughly 50% of the available processing capacity. Thus, for soft real-time systems, which can tolerate occasional or bounded deadline misses, and hence, allow for a tradeoff between timeliness and improved processor utilization, the existing scheduling algorithms or their validation tests can be overkill. The thesis of this dissertation is: Processor utilization can be improved on multiprocessors while providing non-trivial soft real-time guarantees for different soft real-time applications, whose preemption and migration overheads can span different ranges and whose tolerances to tardiness are different, by designing new algorithms, simplifying optimal algorithms, and developing new validation tests. The above thesis is established by developing validation tests that are sufficient to provide soft real-time guarantees under non-optimal (but more practical) algorithms, designing and analyzing a new restricted-migration scheduling algorithm, determining the guarantees on timeliness that can be provided when some limiting restrictions of known optimal algorithms are relaxed, and quantifying the benefits of the proposed mechanisms through simulations. First, we show that both preemptive and non-preemptive global earliest-deadline-first(EDF) scheduling can guarantee bounded tardiness (that is, lateness) to every recurrent real-time task system while requiring no restriction on the workload (except that it not exceed the available processing capacity). The tardiness bounds that we derive can be used to devise validation tests for soft real-time systems that are EDF-scheduled. Though overheads due to migrations and other factors are lower under EDF (than under known optimal algorithms), task migrations are still unrestricted. This may be unappealing for some applications, but if migrations are forbidden entirely, then bounded tardiness cannot always be guaranteed. Hence, we consider providing an acceptable middle path between unrestricted-migration and no-migration algorithms, and as a second result, present a new algorithm that restricts, but does not eliminate, migrations. We also determine bounds on tardiness that can be guaranteed under this algorithm. Finally, we consider a more efficient but non-optimal variant of an optimal class of algorithms called Pfair scheduling algorithms. We show that under this variant, called earliest- pseudo-deadline-first (EPDF) scheduling, significantly more liberal restrictions on workloads than previously known are sufficient for ensuring a specified tardiness bound. We also show that bounded tardiness can be guaranteed if some limiting restrictions of optimal Pfair algorithms are relaxed. The algorithms considered in this dissertation differ in the tardiness bounds guaranteed and overheads imposed. Simulation studies show that these algorithms can guarantee bounded tardiness for a significant percentage of task sets that are not schedulable in a hard real-time sense. Furthermore, for each algorithm, conditions exist in which it may be the preferred choice

    Dynamic Voltage Scaling for Energy- Constrained Real-Time Systems

    Get PDF
    The problem of reducing energy consumption is dominating the design of several real-time systems. The Dynamic Voltage Scaling (DVS) technique, provided by most microprocessors, allow to balance computational speed versus energy consumption. We present some novel energy-aware scheduling algorithms that allow to expoit this technique while meeting real-time constraints. In particular, we present the GRUB-PA algorithm which, unlike most existing algorithms, allows to reduce energy consumption on real-time systems consisting of any kind of task. We also present a working implementation of the algorithm on Linux

    Performanzanalyse für Multi-Core Multi-Mode Systeme mit gemeinsam genutzten Ressourcen - Verfahren und Anwendung auf AUTOSAR -

    Get PDF
    In order to implement multi-core systems for single-mode and multi-mode real-time applications, as can be found in modern automobiles, their development process requires appropriate methods and tools for timing and performance verification. In this context, this thesis proposes first novel approaches for the analysis of worst-case blocking-times and response-times for single-mode real-time applications that share resources in partitioned multi-core systems. For this purpose a compositional performance analysis methodology is adopted and extended to take into account the contention of tasks on the processor cores and on the shared resources under different combinations of processor scheduling policies and shared resource arbitration strategies. Highly relevant is the compatibility of the proposed analysis methods with the specifications of the automotive AUTOSAR standard, which defines the combination of (1) preemptive, non-preemptive and cooperative core local scheduling with (2) lock-based arbitration of core local shared resources and spinlock-based arbitration of inter-core shared resources. Further, this thesis proposes novel timing analysis solutions for multi-mode distributed real-time systems. For such systems, the settling time of a mode change, called mode change transition latency, is identified as an important system parameter that has been neglected before. This thesis contributes a novel analysis algorithm which gives a maximum bound on each mode change transition latency of multi-mode distributed applications. Knowing the settling time of each mode change, the impact of multiple mode changes and of the possible overload situations can be handled in the early development phases of real-time systems. Finally, an approach for safely handling shared resources across mode changes is presented and a corresponding timing analysis method is contributed. The new analysis solution combines modeling and analysis elements of the multi-core and multi-mode related analysis solutions and focuses on the specification of the AUTOSAR standard. This enables system designers to handle the timing behavior of more complex systems in which the problems of mode management, multi-core scheduling and shared resource arbitration coexist. The applicability and usefulness of the contributed analysis solutions are highlighted by experimental evaluations, which are enabled by the implementation of the proposed analysis methods in a performance analysis tool framework.Um Multicore-Systeme für die Umsetzung zeitkritischer Single- und Multi-Mode Anwendungen in sicherheitskritischen Umgebungen einsetzen zu können, werden in dem Entwicklungsprozess geeignete Analysemethoden und Tools zur Bestimmung des Zeitverhaltens und der Performanz benötigt. Als erster Beitrag dieser Dissertation werden neue Analyseverfahren eingeführt, um die Worst-Case-Antwortzeiten und -Blockierungszeiten für statische Echtzeitanwendungen in Single-Mode eingebetteten Multicore-Systemen mit gemeinsam genutzten Ressourcen zu bestimmen. Die entwickelten Verfahren nutzen einen existierenden kompositionellen Performanzanalyseansatz und erweitern diesen, um verschiedene Kombinationen von partitionierenden Multiprozessor-Schedulingverfahren und –Synchronisationsmechanismen behandeln zu können. Besonders praxisrelevant ist die Möglichkeit, die Kombination von (1) preemptives, nicht-preemptives sowie kooperatives Prozessor-Scheduling und (2) Spinlock-basierten Synchronisationsmechanismen zu analysieren, die heute in AUTOSAR-konformen Automotive-Softwarearchitekturen standardisiert sind. Als zweiter Beitrag wird in dieser Dissertation ein neuer Ansatz für die Analyse der zeitlichen Auswirkungen von mehreren Szenarienübergängen in vernetzten Multi-Mode eingebetteten Systemen eingeführt. Als erste konstruktive Maßnahme ermöglicht das in dieser Arbeit präsentierte Verfahren die Berechnung der Einschwingzeit jedes Szenarioübergangs und leistet dadurch eine wichtige Hilfestellung beim Systementwurf. Auf diese Weise können die Auswirkungen der Szenarienübergänge, einschließlich der zeitlich begrenzten Überlastsituationen, kontrolliert und in den Systementwurf frühzeitig einbezogen werden. Als letzter Beitrag dieser Dissertation wird ein Ansatz für die Handhabung der Zugriffskonflikte auf gemeinsam genutzten Ressourcen in Multi-Mode eingebetteten Multicore-Systemen präsentiert und eine entsprechende Analysemethode eingeführt. Die neue Analyse kombiniert Modellierungs- und Analyse-Elemente der vorher in dieser Arbeit eingeführten Analyseansätze, und ermöglicht die Untersuchung des ungünstigsten Zeitverhaltens viel komplexer eingebetteten Multicore-Systemen. Dabei werden erneut Spezifikationen der AUTOSAR-Standards berücksichtigt. Nicht zuletzt werden alle Analysemethoden in eine Toolumgebung implementiert und für verschiedene Experimente, die deren praktische Anwendbarkeit hervorheben, angewendet
    corecore