1,475 research outputs found

    Petri nets approach for designing the migration process towards industrial cyber-physical production systems

    Get PDF
    Presently, many industries are facing strong challenges related to the demand of customized and high-quality products. These pressures lead to internal company's conflicts where current production systems have a rigid structure, forcing the company into a organization stall when a fast product change is required. Therefore, the need to smoothly migrate traditional systems into more feature-rich and cost-effective systems, namely Cyber-Physical Production Systems (CPPS), became a highly discussed topic. PERFoRM project focuses the conceptual transformation of existing production systems towards plug\&produce ones to achieve flexible and reconfigurable manufacturing environments. In particular, the smooth migration process is considered crucial to effectively transpose existing production systems into truly CPPS. This paper describes the use of Petri nets to design the migration process under the PERFoRM perspective, taking advantage of its inherent capabilities to design, analyze, simulate and validate such complex processes.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 680435.info:eu-repo/semantics/publishedVersio

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    A novel approach for No Fault Found decision making

    Get PDF
    Within aerospace and defence sectors, organisations are adding value to their core corporate offerings through services. These services tend to emphasise the potential to maintain future revenue streams and improved profitability and hence require the establishment of cost effective strategies that can manage uncertainties within value led services e.g. maintenance activities. In large organisations, decision-making is often supported by information processing and decision aiding systems; it is not always apparent whose decision affects the outcome the most. Often, accountability moves away from the designated organisation personnel in unforeseen ways, and depending on the decisions of individual decision makers, the structure of the organisation, or unregulated operating procedures may change. This can have far more effect on the overall system reliability – leading to inadequate troubleshooting, repeated down-time, reduced availability and increased burden on Through-life Engineering Services. This paper focuses on outlining current industrial attitudes regarding the No Fault Found (NFF) phenomena and identifies the drivers that influence the NFF decision-making process. It articulates the contents of tacit knowledge and addresses a knowledge gap by developing NFF management policies. The paper further classifies the NFF phenomenon into five key processes that must be controlled by using the developed policies. In addition to the theoretical developments, a Petri net model is also outlined and discussed based on the captured information regarding NFF decision-making in organisations. Since NFF decision-making is influenced by several factors, Petri nets are sought as a powerful tool to realise a meta-model capability to understand the complexity of situations. Its potential managerial implications can help describe decision problems under conditions of uncertainty. Finally, the conclusions indicate that engineering processes, which allow decision-making at various maintenance echelons, can often obfuscate problems that then require a systems approach to illustrate the impact of the issue

    Industrial automation based on cyber-physical systems technologies: Prototype implementations and challenges

    Get PDF
    Cyber-Physical Systems (CPS) is an emergent approach that focuses on the integration of computational applications with physical devices, being designed as a network of interacting cyber and physical elements. CPS control and monitor real-world physical infrastructures and thus is starting having a high impact in industrial automation. As such design, implementation and operation of CPS and management of the resulting automation infrastructure is of key importance for the industry. In this work, an overview of key aspects of industrial CPS, their technologies and emerging directions, as well as challenges for their implementation is presented. Based on the hands-on experiences gathered from four European innovation projects over the last decade (i.e. SOCRADES, IMC-AESOP, GRACE and ARUM), a key challenges have been identified and a prioritization and timeline are pointed out with the aim to increase Technology Readiness Levels and lead to their usage in industrial automation environments.The authors would like to thank for their support the European Commission, and the partners of the EU FP6 SOCRADES (www.socrades.net), EU FP7 GRACE (www.grace-project.org), EU FP7 IMC-AESOP (www.imc-aesop.eu) and EU FP7 ARUM (www.arum-project.eu) projects, for their fruitful support and discussions.info:eu-repo/semantics/publishedVersio

    Mathematics in Software Reliability and Quality Assurance

    Get PDF
    This monograph concerns the mathematical aspects of software reliability and quality assurance and consists of 11 technical papers in this emerging area. Included are the latest research results related to formal methods and design, automatic software testing, software verification and validation, coalgebra theory, automata theory, hybrid system and software reliability modeling and assessment

    Designing, Building, and Modeling Maneuverable Applications within Shared Computing Resources

    Get PDF
    Extending the military principle of maneuver into war-fighting domain of cyberspace, academic and military researchers have produced many theoretical and strategic works, though few have focused on researching actual applications and systems that apply this principle. We present our research in designing, building and modeling maneuverable applications in order to gain the system advantages of resource provisioning, application optimization, and cybersecurity improvement. We have coined the phrase “Maneuverable Applications” to be defined as distributed and parallel application that take advantage of the modification, relocation, addition or removal of computing resources, giving the perception of movement. Our work with maneuverable applications has been within shared computing resources, such as the Clemson University Palmetto cluster, where multiple users share access and time to a collection of inter-networked computers and servers. In this dissertation, we describe our implementation and analytic modeling of environments and systems to maneuver computational nodes, network capabilities, and security enhancements for overcoming challenges to a cyberspace platform. Specifically we describe our work to create a system to provision a big data computational resource within academic environments. We also present a computing testbed built to allow researchers to study network optimizations of data centers. We discuss our Petri Net model of an adaptable system, which increases its cybersecurity posture in the face of varying levels of threat from malicious actors. Lastly, we present work and investigation into integrating these technologies into a prototype resource manager for maneuverable applications and validating our model using this implementation

    Special Session on Industry 4.0

    Get PDF
    No abstract available
    corecore