147 research outputs found

    Universal Quantum Hamiltonians

    Get PDF
    Quantum many-body systems exhibit an extremely diverse range of phases and physical phenomena. Here, we prove that the entire physics of any other quantum many-body system is replicated in certain simple, "universal" spin-lattice models. We first characterise precisely what it means for one quantum many-body system to replicate the entire physics of another. We then show that certain very simple spin-lattice models are universal in this very strong sense. Examples include the Heisenberg and XY models on a 2D square lattice (with non-uniform coupling strengths). We go on to fully classify all two-qubit interactions, determining which are universal and which can only simulate more restricted classes of models. Our results put the practical field of analogue Hamiltonian simulation on a rigorous footing and take a significant step towards justifying why error correction may not be required for this application of quantum information technology.Comment: 78 pages, 9 figures, 44 theorems etc. v2: Trivial fixes. v3: updated and simplified proof of Thm. 9; 82 pages, 47 theorems etc. v3: Small fix in proof of time-evolution lemma (this fix not in published version

    The complexity of antiferromagnetic interactions and 2D lattices

    Full text link
    Estimation of the minimum eigenvalue of a quantum Hamiltonian can be formalised as the Local Hamiltonian problem. We study the natural special case of the Local Hamiltonian problem where the same 2-local interaction, with differing weights, is applied across each pair of qubits. First we consider antiferromagnetic/ferromagnetic interactions, where the weights of the terms in the Hamiltonian are restricted to all be of the same sign. We show that for symmetric 2-local interactions with no 1-local part, the problem is either QMA-complete or in StoqMA. In particular the antiferromagnetic Heisenberg and antiferromagnetic XY interactions are shown to be QMA-complete. We also prove StoqMA-completeness of the antiferromagnetic transverse field Ising model. Second, we study the Local Hamiltonian problem under the restriction that the interaction terms can only be chosen to lie on a particular graph. We prove that nearly all of the QMA-complete 2-local interactions remain QMA-complete when restricted to a 2D square lattice. Finally we consider both restrictions at the same time and discover that, with the exception of the antiferromagnetic Heisenberg interaction, all of the interactions which are QMA-complete with positive coefficients remain QMA-complete when restricted to a 2D triangular lattice.Comment: 35 pages, 11 figures; v2 added reference

    Toric codes and quantum doubles from two-body Hamiltonians

    Get PDF
    We present here a procedure to obtain the Hamiltonians of the toric code and Kitaev quantum double models as the low-energy limits of entirely two-body Hamiltonians. Our construction makes use of a new type of perturbation gadget based on error-detecting subsystem codes. The procedure is motivated by a projected entangled pair states (PEPS) description of the target models, and reproduces the target models' behavior using only couplings that are natural in terms of the original Hamiltonians. This allows our construction to capture the symmetries of the target models

    The computational complexity of density functional theory

    Full text link
    Density functional theory is a successful branch of numerical simulations of quantum systems. While the foundations are rigorously defined, the universal functional must be approximated resulting in a `semi'-ab initio approach. The search for improved functionals has resulted in hundreds of functionals and remains an active research area. This chapter is concerned with understanding fundamental limitations of any algorithmic approach to approximating the universal functional. The results based on Hamiltonian complexity presented here are largely based on \cite{Schuch09}. In this chapter, we explain the computational complexity of DFT and any other approach to solving electronic structure Hamiltonians. The proof relies on perturbative gadgets widely used in Hamiltonian complexity and we provide an introduction to these techniques using the Schrieffer-Wolff method. Since the difficulty of this problem has been well appreciated before this formalization, practitioners have turned to a host approximate Hamiltonians. By extending the results of \cite{Schuch09}, we show in DFT, although the introduction of an approximate potential leads to a non-interacting Hamiltonian, it remains, in the worst case, an NP-complete problem.Comment: Contributed chapter to "Many-Electron Approaches in Physics, Chemistry and Mathematics: A Multidisciplinary View

    Adiabatic and Hamiltonian computing on a 2D lattice with simple 2-qubit interactions

    Get PDF
    We show how to perform universal Hamiltonian and adiabatic computing using a time-independent Hamiltonian on a 2D grid describing a system of hopping particles which string together and interact to perform the computation. In this construction, the movement of one particle is controlled by the presence or absence of other particles, an effective quantum field effect transistor that allows the construction of controlled-NOT and controlled-rotation gates. The construction translates into a model for universal quantum computation with time-independent 2-qubit ZZ and XX+YY interactions on an (almost) planar grid. The effective Hamiltonian is arrived at by a single use of first-order perturbation theory avoiding the use of perturbation gadgets. The dynamics and spectral properties of the effective Hamiltonian can be fully determined as it corresponds to a particular realization of a mapping between a quantum circuit and a Hamiltonian called the space-time circuit-to-Hamiltonian construction. Because of the simple interactions required, and because no higher-order perturbation gadgets are employed, our construction is potentially realizable using superconducting or other solid-state qubits.Comment: 33 pages, 5 figure
    corecore