159 research outputs found

    An SDP Approach For Solving Quadratic Fractional Programming Problems

    Full text link
    This paper considers a fractional programming problem (P) which minimizes a ratio of quadratic functions subject to a two-sided quadratic constraint. As is well-known, the fractional objective function can be replaced by a parametric family of quadratic functions, which makes (P) highly related to, but more difficult than a single quadratic programming problem subject to a similar constraint set. The task is to find the optimal parameter λ∗\lambda^* and then look for the optimal solution if λ∗\lambda^* is attained. Contrasted with the classical Dinkelbach method that iterates over the parameter, we propose a suitable constraint qualification under which a new version of the S-lemma with an equality can be proved so as to compute λ∗\lambda^* directly via an exact SDP relaxation. When the constraint set of (P) is degenerated to become an one-sided inequality, the same SDP approach can be applied to solve (P) {\it without any condition}. We observe that the difference between a two-sided problem and an one-sided problem lies in the fact that the S-lemma with an equality does not have a natural Slater point to hold, which makes the former essentially more difficult than the latter. This work does not, either, assume the existence of a positive-definite linear combination of the quadratic terms (also known as the dual Slater condition, or a positive-definite matrix pencil), our result thus provides a novel extension to the so-called "hard case" of the generalized trust region subproblem subject to the upper and the lower level set of a quadratic function.Comment: 26 page

    General Approach to Neutrino Mass Mechanisms with Sterile Neutrinos

    Full text link
    We present a mathematical framework for constructing the most general neutrino mass matrices that yield the observed spectrum of light active neutrino masses in conjunction with arbitrarily many heavy sterile neutrinos, without the need to assume a hierarchy between Dirac and Majorana mass terms. The seesaw mechanism is a byproduct of the formalism, along with many other possibilities for generating tiny neutrino masses. We comment on phenomenological applications of this approach, in particular deriving a mechanism to address the long-standing (g−2)μ(g-2)_\mu anomaly in the context of the left-right symmetric model.Comment: 5 pages and appendices, 2 figure

    Complex Obtuse Random Walks and their Continuous-Time Limits

    Full text link
    We study a particular class of complex-valued random variables and their associated random walks: the complex obtuse random variables. They are the generalization to the complex case of the real-valued obtuse random variables which were introduced in \cite{A-E} in order to understand the structure of normal martingales in \RR^n.The extension to the complex case is mainly motivated by considerations from Quantum Statistical Mechanics, in particular for the seek of a characterization of those quantum baths acting as classical noises. The extension of obtuse random variables to the complex case is far from obvious and hides very interesting algebraical structures. We show that complex obtuse random variables are characterized by a 3-tensor which admits certain symmetries which we show to be the exact 3-tensor analogue of the normal character for 2-tensors (i.e. matrices), that is, a necessary and sufficient condition for being diagonalizable in some orthonormal basis. We discuss the passage to the continuous-time limit for these random walks and show that they converge in distribution to normal martingales in \CC^N. We show that the 3-tensor associated to these normal martingales encodes their behavior, in particular the diagonalization directions of the 3-tensor indicate the directions of the space where the martingale behaves like a diffusion and those where it behaves like a Poisson process. We finally prove the convergence, in the continuous-time limit, of the corresponding multiplication operators on the canonical Fock space, with an explicit expression in terms of the associated 3-tensor again
    • …
    corecore