6,006 research outputs found

    Logical Embeddings for Minimum Congestion Routing in Lightwave Networks

    Get PDF
    The problem considered in this paper is motivated by the independence between logical and physical topology in Wavelength Division Multiplexing WDM based local and metropolitan lightwave networks. This paper suggests logical embeddings of digraphs into multihop lightwave networks to maximize the throughput under nonuniform traffic conditions. Defining congestion as the maximum flow carried on any link, two perturbation heuristics are presented to find a good logical embedding on which the routing problem is solved with minimum congestion. A constructive proof for a lower bound of the problem is given, and obtaining an optimal solution for integral routing is shown to be NP-Complete. The performance of the heuristics is empirically analyzed on various traffic models. Simulation results show that our heuristics perform on the average from a computed lower bound Since this lower bound is not quite tight we suspect that the actual performance is better In addition we show that 5%-20% performance improvements can be obtained over the previous work

    The Modified CW1 Algorithm for the Degree Restricted Minimum Spanning Tree Problem

    Full text link
    Given edge weighted graph G (all weights are non-negative), The Degree Constrained Minimum Spanning Tree Problem is concerned with finding the minimum weight spanning tree T satisfying specified degree restrictions on the vertices. This problem arises naturally in communication networks where the degree of a vertex represents the number of line interfaces available at a terminal (center). The applications of the Degree Constrained Minimum Spanning Tree problems that may arise in real-life include: the design of telecommunication, transportation, and energy networks. It is also used as a subproblem in the design of networks for computer communication, transportation, sewage and plumbing. Since, apart from some trivial cases, the problem is computationally difficult (NP-complete), a number of heuristics have been proposed. In this paper we will discuss the modification of CW1 Algorithm that already proposed by Wamiliana and Caccetta (2003). The results on540 random table problems will be discussed

    The Modified CW1 Algorithm For The Degree Restricted Minimum Spanning Tree Problem

    Get PDF
    Given edge weighted graph G (all weights are non-negative), The Degree Constrained Minimum Spanning Tree Problem is concerned with finding the minimum weight spanning tree T satisfying specified degree restrictions on the vertices. This problem arises naturally in communication networks where the degree of a vertex represents the number of line interfaces available at a terminal (center). The applications of the Degree Constrained Minimum Spanning Tree problems that may arise in real-life include: the design of telecommunication, transportation, and energy networks. It is also used as a subproblem in the design of networks for computer communication, transportation, sewage and plumbing. Since, apart from some trivial cases, the problem is computationally difficult (NP-complete), a number of heuristics have been proposed. In this paper we will discuss the modification of CW1 Algorithm that already proposed by Wamiliana and Caccetta (2003). The results on540 random table problems will be discussed

    Efficient, Superstabilizing Decentralised Optimisation for Dynamic Task Allocation Environments

    No full text
    Decentralised optimisation is a key issue for multi-agent systems, and while many solution techniques have been developed, few provide support for dynamic environments, which change over time, such as disaster management. Given this, in this paper, we present Bounded Fast Max Sum (BFMS): a novel, dynamic, superstabilizing algorithm which provides a bounded approximate solution to certain classes of distributed constraint optimisation problems. We achieve this by eliminating dependencies in the constraint functions, according to how much impact they have on the overall solution value. In more detail, we propose iGHS, which computes a maximum spanning tree on subsections of the constraint graph, in order to reduce communication and computation overheads. Given this, we empirically evaluate BFMS, which shows that BFMS reduces communication and computation done by Bounded Max Sum by up to 99%, while obtaining 60-88% of the optimal utility

    An Order-based Algorithm for Minimum Dominating Set with Application in Graph Mining

    Full text link
    Dominating set is a set of vertices of a graph such that all other vertices have a neighbour in the dominating set. We propose a new order-based randomised local search (RLSo_o) algorithm to solve minimum dominating set problem in large graphs. Experimental evaluation is presented for multiple types of problem instances. These instances include unit disk graphs, which represent a model of wireless networks, random scale-free networks, as well as samples from two social networks and real-world graphs studied in network science. Our experiments indicate that RLSo_o performs better than both a classical greedy approximation algorithm and two metaheuristic algorithms based on ant colony optimisation and local search. The order-based algorithm is able to find small dominating sets for graphs with tens of thousands of vertices. In addition, we propose a multi-start variant of RLSo_o that is suitable for solving the minimum weight dominating set problem. The application of RLSo_o in graph mining is also briefly demonstrated

    On Computing the Translations Norm in the Epipolar Graph

    Full text link
    This paper deals with the problem of recovering the unknown norm of relative translations between cameras based on the knowledge of relative rotations and translation directions. We provide theoretical conditions for the solvability of such a problem, and we propose a two-stage method to solve it. First, a cycle basis for the epipolar graph is computed, then all the scaling factors are recovered simultaneously by solving a homogeneous linear system. We demonstrate the accuracy of our solution by means of synthetic and real experiments.Comment: Accepted at 3DV 201
    • …
    corecore