2,792 research outputs found

    Analysis of surface parametrizations for modern photometric stereo modeling

    Get PDF
    Tridimensional shape recovery based on Photometric Stereo (PS) recently received a strong improvement due to new mathematical models based on partial differential irradiance equation ratios. This modern approach to PS faces more realistic physical effects among which light attenuation and radial light propagation from a point light source. Since the approximation of the surface is performed with single step method, accurate reconstruction is prevented by sensitiveness to noise. In this paper we analyse a well-known parametrization of the tridimensional surface extending it on any auxiliary convex projection functions. Experiments on synthetic data show preliminary results where more accurate reconstruction can be achieved using more suitable parametrization specially in case of noisy input images

    A progressive refinement approach for the visualisation of implicit surfaces

    Get PDF
    Visualising implicit surfaces with the ray casting method is a slow procedure. The design cycle of a new implicit surface is, therefore, fraught with long latency times as a user must wait for the surface to be rendered before being able to decide what changes should be introduced in the next iteration. In this paper, we present an attempt at reducing the design cycle of an implicit surface modeler by introducing a progressive refinement rendering approach to the visualisation of implicit surfaces. This progressive refinement renderer provides a quick previewing facility. It first displays a low quality estimate of what the final rendering is going to be and, as the computation progresses, increases the quality of this estimate at a steady rate. The progressive refinement algorithm is based on the adaptive subdivision of the viewing frustrum into smaller cells. An estimate for the variation of the implicit function inside each cell is obtained with an affine arithmetic range estimation technique. Overall, we show that our progressive refinement approach not only provides the user with visual feedback as the rendering advances but is also capable of completing the image faster than a conventional implicit surface rendering algorithm based on ray casting

    Equivalence of oblique and frontal illumination in perspective shape from shading

    Get PDF
    In this paper, it is shown that any oblique illumination shape-from-shading problem under perspective projection for Lambertian reflection and a single distant light source can be converted to an equivalent frontal illumination problem by a simple nonlinear intensity transformation which is equivalent to a rectification in stereo vision. Remarkably, it involves no approximation of depth. The method is evaluated on perspective shape-from-shading involving wide range of oblique angles. © 2007 IEEE.published_or_final_versio

    Shape from Shading: Recognizing the Mountains through a Global View

    Get PDF
    Resolving local ambiguities is an important issue for shape from shading (SFS). Pixel ambiguities of SFS can be eliminated by propagation approaches. However, patch ambiguities still exist. Therefore, we formulate the global disambiguation problem to resolve these ambiguities. Intuitively, it can be interpreted as flipping patches and adjusting heights such that the result surface has no kinks. The problem i s intractable because exponentially many possible configurations need to be checked. Alternatively, we solve the integrability testing problem closely related to the original one. It can be viewed as finding a surface which satisfies the global integrability constraint. To encode the constraints, we introduce a graph formulation called configuration graph. Searching the solution on this graph can be reduced to a Max-cut problem and its solution is computable using semidefinite programming (SDP) relaxation. Tests carried out on synthetic and real images show that the global disambiguation works well fro complex shapes

    A variational technique for three-dimensional reconstruction of local structure

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 1999.Includes bibliographical references (leaves 66-70).by Eric Raphaël Amram.S.M

    Photometric stereo for strong specular highlights

    Full text link
    Photometric stereo (PS) is a fundamental technique in computer vision known to produce 3-D shape with high accuracy. The setting of PS is defined by using several input images of a static scene taken from one and the same camera position but under varying illumination. The vast majority of studies in this 3-D reconstruction method assume orthographic projection for the camera model. In addition, they mainly consider the Lambertian reflectance model as the way that light scatters at surfaces. So, providing reliable PS results from real world objects still remains a challenging task. We address 3-D reconstruction by PS using a more realistic set of assumptions combining for the first time the complete Blinn-Phong reflectance model and perspective projection. To this end, we will compare two different methods of incorporating the perspective projection into our model. Experiments are performed on both synthetic and real world images. Note that our real-world experiments do not benefit from laboratory conditions. The results show the high potential of our method even for complex real world applications such as medical endoscopy images which may include high amounts of specular highlights
    corecore