3,116 research outputs found

    Feasibility of expanding traffic monitoring systems with floating car data technology

    Get PDF
    Trajectory information reported by certain vehicles (Floating Car Data or FCD) can be applied to monitor the road network. Policy makers face difficulties when deciding to invest in the expansion of their infrastructure based on inductive loops and cameras, or to invest in a FCD system. This paper targets this decision. The provided FCD functionality is investigated, minimum requirements are determined and reliability issues are researched. The communication cost is derived and combined with other elements to assess the total costs for different scenarios. The outcome is to target a penetration rate of 1%, a sample interval of 10 seconds and a transmission interval of 30 seconds. Such a deployment can accurately determine the locations of incidents and traffic jams. It can also estimate travel times accurately for highways, for urban roads this is limited to a binary categorization into normal or congested traffic. No reliability issues are expected. The most cost efficient scenario when deploying a new FCD system is to launch a smartphone application. For Belgium, this costs 13 million EUR for 10 years. However, it is estimated that purchasing data from companies already acquiring FCD data through their own product could reduce costs with a factor 10

    A review of travel and arrival-time prediction methods on road networks: classification, challenges and opportunities

    Get PDF
    Transportation plays a key role in today’s economy. Hence, intelligent transportation systems have attracted a great deal of attention among research communities. There are a few review papers in this area. Most of them focus only on travel time prediction. Furthermore, these papers do not include recent research. To address these shortcomings, this study aims to examine the research on the arrival and travel time prediction on road-based on recently published articles. More specifically, this paper aims to (i) offer an extensive literature review of the field, provide a complete taxonomy of the existing methods, identify key challenges and limitations associated with the techniques; (ii) present various evaluation metrics, influence factors, exploited dataset as well as describe essential concepts based on a detailed analysis of the recent literature sources; (iii) provide significant information to researchers and transportation applications developer. As a result of a rigorous selection process and a comprehensive analysis, the findings provide a holistic picture of open issues and several important observations that can be considered as feasible opportunities for future research directions

    Doctor of Philosophy

    Get PDF
    dissertationThe Active Traffic and Demand Management (ATDM) initiative aims to integrate various management strategies and control measures so as to achieve the mobility, environment and sustainability goals. To support the active monitoring and management of real-world complex traffic conditions, the first objective of this dissertation is to develop a travel time reliability estimation and prediction methodology that can provide informed decisions for the management and operation agencies and travelers. A systematic modeling framework was developed to consider a corridor with multiple bottlenecks, and a series of close-form formulas was derived to quantify the travel time distribution under both stochastic demand and capacity, with possible on-ramp and off-ramp flow changes. Traffic state estimation techniques are often used to guide operational management decisions, and accurate traffic estimates are critically needed in ATDM applications designed for reducing instability, volatility and emissions in the transportation system. By capturing the essential forward and backward wave propagation characteristics under possible random measurement errors, this dissertation proposes a unified representation with a simple but theoretically sound explanation for traffic observations under free-flow, congested and dynamic transient conditions. This study also presents a linear programming model to quantify the value of traffic measurements, in a heterogeneous data environment with fixed sensors, Bluetooth readers and GPS sensors. It is important to design comprehensive traffic control measures that can systematically address deteriorating congestion and environmental issues. To better evaluate and assess the mobility and environmental benefits of the transportation improvement plans, this dissertation also discusses a cross-resolution modeling framework for integrating a microscopic emission model with the existing mesoscopic traffic simulation model. A simplified car-following model-based vehicle trajectory construction method is used to generate the high-resolution vehicle trajectory profiles and resulting emission output. In addition, this dissertation discusses a number of important issues for a cloud computing-based software system implementation. A prototype of a reliability-based traveler information provision and dissemination system is developed to offer a rich set of travel reliability information for the general public and traffic management and planning organizations

    Optimizing city-scale traffic through modeling observations of vehicle movements

    Full text link
    The capability of traffic-information systems to sense the movement of millions of users and offer trip plans through mobile phones has enabled a new way of optimizing city traffic dynamics, turning transportation big data into insights and actions in a closed-loop and evaluating this approach in the real world. Existing research has applied dynamic Bayesian networks and deep neural networks to make traffic predictions from floating car data, utilized dynamic programming and simulation approaches to identify how people normally travel with dynamic traffic assignment for policy research, and introduced Markov decision processes and reinforcement learning to optimally control traffic signals. However, none of these works utilized floating car data to suggest departure times and route choices in order to optimize city traffic dynamics. In this paper, we present a study showing that floating car data can lead to lower average trip time, higher on-time arrival ratio, and higher Charypar-Nagel score compared with how people normally travel. The study is based on optimizing a partially observable discrete-time decision process and is evaluated in one synthesized scenario, one partly synthesized scenario, and three real-world scenarios. This study points to the potential of a "living lab" approach where we learn, predict, and optimize behaviors in the real world

    Sensing Human Activity for Smart Cities’ Mobility Management

    Get PDF
    Knowledge about human mobility patterns is the key element towards efficient mobility management. Traditionally, these data are collected by paper/phone household surveys or travel diaries and serve as input for transportation planning models. In this chapter, we report on current state-of-the-art techniques for sensing human activity and report on their applicability for smart city mobility management purposes. We particularly focus on the use of location-enabled devices and their potential towards replacing traditional data collection approaches. Furthermore, to illustrate applicability of smartphones as ubiquitous sensing devices we report on the use of Routecoach application that was used for mobility data collection in the city of Leuven, Belgium. We provide insights into lessons learned, ways in which collected data were used by different stakeholders, and identify existing gaps and future research needs in this field
    • …
    corecore