12,018 research outputs found

    Visualization and Interaction Technologies in Serious and Exergames for Cognitive Assessment and Training: A Survey on Available Solutions and Their Validation

    Get PDF
    Exergames and serious games, based on standard personal computers, mobile devices and gaming consoles or on novel immersive Virtual and Augmented Reality techniques, have become popular in the last few years and are now applied in various research fields, among which cognitive assessment and training of heterogeneous target populations. Moreover, the adoption of Web based solutions together with the integration of Artificial Intelligence and Machine Learning algorithms could bring countless advantages, both for the patients and the clinical personnel, as allowing the early detection of some pathological conditions, improving the efficacy and adherence to rehabilitation processes, through the personalisation of training sessions, and optimizing the allocation of resources by the healthcare system. The current work proposes a systematic survey of existing solutions in the field of cognitive assessment and training. We evaluate the visualization and interaction technologies commonly adopted and the measures taken to fulfil the need of the pathological target populations. Moreover, we analyze how implemented solutions are validated, i.e. The chosen experimental designs, data collection and analysis. Finally, we consider the availability of the applications and raw data to the large community of researchers and medical professionals and the actual application of proposed solutions in the standard clinical practice. Despite the potential of these technologies, research is still at an early stage. Although the recent release of accessible immersive virtual reality headsets and the increasing interest on vision-based techniques for tracking body and hands movements, many studies still rely on non-immersive virtual reality (67.2%), mainly mobile and personal computers, and standard gaming tools for interactions (41.5%). Finally, we highlight that although the interest of research community in this field is increasingly higher, the sharing of dataset (10.6%) and implemented applications (3.8%) should be promoted and the number of healthcare structures which have successfully introduced the new technological approaches in the treatment of their host patients is limited (10.2%)

    A Preliminary Study of Integrating Flipped Classroom strategy for Classical Chinese Learning

    Get PDF
    [[abstract]]This is a multiphase study which aims to investigate how to provide learners with an method to acquire classical Chinese through integrating mobile technology with the flipped classroom approach. Currently, in the first phase of study, the researcher adopts informant design through questionnaire survey to understand students' and instructors' perceptions of using mobile learning devices for classical Chinese learning, and afterwards the researcher constructs the system based on the pilot results. The pilot questionnaire results, structure of the developed mobile learning system and the practical application of the developed system for classical Chinese teaching and learning are described in the paper.[[notice]]補正完

    Game-inspired Pedagogical Conversational Agents: A Systematic Literature Review

    Get PDF
    Pedagogical conversational agents (PCAs) are an innovative way to help learners improve their academic performance via intelligent dialog systems. However, PCAs have not yet reached their full potential. They often fail because users perceive conversations with them as not engaging. Enriching them with game-based approaches could contribute to mitigating this issue. One could enrich a PCA with game-based approaches by gamifying it to foster positive effects, such as fun and motivation, or by integrating it into a game-based learning (GBL) environment to promote effects such as social presence and enable individual learning support. We summarize PCAs that are combined with game-based approaches under the novel term “game-inspired PCAs”. We conducted a systematic literature review on this topic, as previous literature reviews on PCAs either have not combined the topics of PCAs and GBL or have done so to a limited extent only. We analyzed the literature regarding the existing design knowledge base, the game elements used, the thematic areas and target groups, the PCA roles and types, the extent of artificial intelligence (AI) usage, and opportunities for adaptation. We reduced the initial 3,034 records to 50 fully coded papers, from which we derived a morphological box and revealed current research streams and future research recommendations. Overall, our results show that the topic offers promising application potential but that scholars and practitioners have not yet considered it holistically. For instance, we found that researchers have rarely provided prescriptive design knowledge, have not sufficiently combined game elements, and have seldom used AI algorithms as well as intelligent possibilities of user adaptation in PCA development. Furthermore, researchers have scarcely considered certain target groups, thematic areas, and PCA roles. Consequently, our paper contributes to research and practice by addressing research gaps and structuring the existing knowledge base

    The promise of digital healthcare technologies

    Get PDF
    Digital health technologies have been in use for many years in a wide spectrum of healthcare scenarios. This narrative review outlines the current use and the future strategies and significance of digital health technologies in modern healthcare applications. It covers the current state of the scientific field (delineating major strengths, limitations, and applications) and envisions the future impact of relevant emerging key technologies. Furthermore, we attempt to provide recommendations for innovative approaches that would accelerate and benefit the research, translation and utilization of digital health technologies

    Digital teaching materials and their relationship with the metacognitive skills of students in primary education

    Get PDF
    Metacognition is a construct that is noteworthy for its relationship with the prediction and enhancement of student performance. It is of interest in education, as well as in the field of cognitive psychology, because it contributes to competencies, such as learning to learn and the understanding of information. This study conducted research at a state school in the Community of Madrid (Spain) with a sample of 130 students in Grade 3 of their primary education (8 years old). The research involved the use of a digital teaching platform called Smile and Learn, as the feedback included in the digital activities may have an effect on students' metacognition. We analyzed the implementation of the intelligent platform at school and the activities most commonly engaged in. The Junior Metacognitive Awareness Inventory (Jr. MAI) was the measuring instrument chosen for the external evaluation of metacognition. The study's results show a higher use of logic and spatial activities. A relationship is observed between the use of digital exercises that have specific feedback and work on logic and visuospatial skills with metacognitive knowledge. We discuss our findings surrounding educational implications, metacognition assessment, and recommendations for improvements of the digital materials.This research was funded by Community of Madrid ‘Industrial PhD grants’, under project number IND2017/SOC-7874

    Integrating knowledge tracing and item response theory: A tale of two frameworks

    Get PDF
    Traditionally, the assessment and learning science commu-nities rely on different paradigms to model student performance. The assessment community uses Item Response Theory which allows modeling different student abilities and problem difficulties, while the learning science community uses Knowledge Tracing, which captures skill acquisition. These two paradigms are complementary - IRT cannot be used to model student learning, while Knowledge Tracing assumes all students and problems are the same. Recently, two highly related models based on a principled synthesis of IRT and Knowledge Tracing were introduced. However, these two models were evaluated on different data sets, using different evaluation metrics and with different ways of splitting the data into training and testing sets. In this paper we reconcile the models' results by presenting a unified view of the two models, and by evaluating the models under a common evaluation metric. We find that both models are equivalent and only differ in their training procedure. Our results show that the combined IRT and Knowledge Tracing models offer the best of assessment and learning sciences - high prediction accuracy like the IRT model, and the ability to model student learning like Knowledge Tracing
    corecore