2 research outputs found

    Review on learning orientations

    Get PDF
    The need has arises towards the consideration of individual difference to let learners engage in and responsible for their own learning, retain information longer, apply the knowledge more effectively, have positive attitudes towards the subject, have more interest in learning materials, score higher and have high intrinsic motivation level. As regard to the importance of individual differences, Martinez (2000) has grounded a new theory, which is Intentional Learning Theory that covered individual aspects of cognitive, intention, social and emotion. This theory hypothesizes that the fundamental of understanding how individual learns, interact with an environment, performs, engages in learning, experiences learning, and assimilate and accommodate the new knowledge is by understanding individual’s fundamental emotions and intentions about how to use learning, why it is important, when the suitable time, and how it can accomplish personal goals and change. The intent of this theory is to focus on emotions and intentions of an individual regarding why, when and how learning goals are organized, processed, and achieved. In conclusion, Learning Orientations introduced by this theory describes the disposition of an individual in approaching, managing and achieving their learning intentionally and differently from others

    COMPARATIVE STUDY: FEATURE SELECTION METHODS IN THE BLENDED LEARNING ENVIRONMENT

    Get PDF
    Research presented in this paper deals with the unknown behavior pattern of students in the blended learning environment. In order to improve prediction accuracy it was necessary to determine the methodology for students` activities assessments. The Training set was created by combining distributed sources – Moodle database and traditional learning process. The methodology emphasizes data mining preprocessing phase: transformation and features selection. Information gain, Symmetrical Uncert Feature Eval, RelieF, Correlation based Feature Selection, Wrapper Subset Evaluation, Classifier Subset Evaluator features selection methods were implemented to find the most relevant subset. Statistical dependence was determined by calculating mutual information measure. Naïve Bayes, Aggregating One-Dependence Estimators, Decision tree and Support Vector Machines classifiers have been trained for subsets with different cardinality. Models were evaluated with comparative analysis of statistical parameters and time required to build them. We have concluded that the RelieF, Wrapper Subset Evaluation and mutual information present the most convenient features selection methods for blended learning environment. The major contribution of the presented research is selecting the optimal low-cardinal subset of students’ activities and a significant prediction accuracy improvement in blended learning environment
    corecore