1 research outputs found

    Personalised human activity recognition using matching networks.

    Get PDF
    Human Activity Recognition (HAR) is typically modelled as a classification task where sensor data associated with activity labels are used to train a classifier to recognise future occurrences of these activities. An important consideration when training HAR models is whether to use training data from a general population (subject-independent), or personalised training data from the target user (subject-dependent). Previous evaluations have shown personalised training to be more accurate because of the ability of resulting models to better capture individual users' activity patterns. From a practical perspective however, collecting sufficient training data from end users may not be feasible. This has made using subject-independent training far more common in real-world HAR systems. In this paper, we introduce a novel approach to personalised HAR using a neural network architecture called a matching network. Matching networks perform nearest-neighbour classification by reusing the class label of the most similar instances in a provided support set, which makes them very relevant to case-based reasoning. A key advantage of matching networks is that they use metric learning to produce feature embeddings or representations that maximise classification accuracy, given a chosen similarity metric. Evaluations show our approach to substantially out perform general subject-independent models by at least 6% macro-averaged F1 score
    corecore