97,459 research outputs found

    DarkRank: Accelerating Deep Metric Learning via Cross Sample Similarities Transfer

    Full text link
    We have witnessed rapid evolution of deep neural network architecture design in the past years. These latest progresses greatly facilitate the developments in various areas such as computer vision and natural language processing. However, along with the extraordinary performance, these state-of-the-art models also bring in expensive computational cost. Directly deploying these models into applications with real-time requirement is still infeasible. Recently, Hinton etal. have shown that the dark knowledge within a powerful teacher model can significantly help the training of a smaller and faster student network. These knowledge are vastly beneficial to improve the generalization ability of the student model. Inspired by their work, we introduce a new type of knowledge -- cross sample similarities for model compression and acceleration. This knowledge can be naturally derived from deep metric learning model. To transfer them, we bring the "learning to rank" technique into deep metric learning formulation. We test our proposed DarkRank method on various metric learning tasks including pedestrian re-identification, image retrieval and image clustering. The results are quite encouraging. Our method can improve over the baseline method by a large margin. Moreover, it is fully compatible with other existing methods. When combined, the performance can be further boosted

    A Pose-Sensitive Embedding for Person Re-Identification with Expanded Cross Neighborhood Re-Ranking

    Full text link
    Person re identification is a challenging retrieval task that requires matching a person's acquired image across non overlapping camera views. In this paper we propose an effective approach that incorporates both the fine and coarse pose information of the person to learn a discriminative embedding. In contrast to the recent direction of explicitly modeling body parts or correcting for misalignment based on these, we show that a rather straightforward inclusion of acquired camera view and/or the detected joint locations into a convolutional neural network helps to learn a very effective representation. To increase retrieval performance, re-ranking techniques based on computed distances have recently gained much attention. We propose a new unsupervised and automatic re-ranking framework that achieves state-of-the-art re-ranking performance. We show that in contrast to the current state-of-the-art re-ranking methods our approach does not require to compute new rank lists for each image pair (e.g., based on reciprocal neighbors) and performs well by using simple direct rank list based comparison or even by just using the already computed euclidean distances between the images. We show that both our learned representation and our re-ranking method achieve state-of-the-art performance on a number of challenging surveillance image and video datasets. The code is available online at: https://github.com/pse-ecn/pose-sensitive-embeddingComment: CVPR 2018: v2 (fixes, added new results on PRW dataset

    Spatial and Temporal Mutual Promotion for Video-based Person Re-identification

    Full text link
    Video-based person re-identification is a crucial task of matching video sequences of a person across multiple camera views. Generally, features directly extracted from a single frame suffer from occlusion, blur, illumination and posture changes. This leads to false activation or missing activation in some regions, which corrupts the appearance and motion representation. How to explore the abundant spatial-temporal information in video sequences is the key to solve this problem. To this end, we propose a Refining Recurrent Unit (RRU) that recovers the missing parts and suppresses noisy parts of the current frame's features by referring historical frames. With RRU, the quality of each frame's appearance representation is improved. Then we use the Spatial-Temporal clues Integration Module (STIM) to mine the spatial-temporal information from those upgraded features. Meanwhile, the multi-level training objective is used to enhance the capability of RRU and STIM. Through the cooperation of those modules, the spatial and temporal features mutually promote each other and the final spatial-temporal feature representation is more discriminative and robust. Extensive experiments are conducted on three challenging datasets, i.e., iLIDS-VID, PRID-2011 and MARS. The experimental results demonstrate that our approach outperforms existing state-of-the-art methods of video-based person re-identification on iLIDS-VID and MARS and achieves favorable results on PRID-2011.Comment: Accepted by AAAI19 as spotligh

    Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting

    Get PDF
    For person re-identification, existing deep networks often focus on representation learning. However, without transfer learning, the learned model is fixed as is, which is not adaptable for handling various unseen scenarios. In this paper, beyond representation learning, we consider how to formulate person image matching directly in deep feature maps. We treat image matching as finding local correspondences in feature maps, and construct query-adaptive convolution kernels on the fly to achieve local matching. In this way, the matching process and results are interpretable, and this explicit matching is more generalizable than representation features to unseen scenarios, such as unknown misalignments, pose or viewpoint changes. To facilitate end-to-end training of this architecture, we further build a class memory module to cache feature maps of the most recent samples of each class, so as to compute image matching losses for metric learning. Through direct cross-dataset evaluation, the proposed Query-Adaptive Convolution (QAConv) method gains large improvements over popular learning methods (about 10%+ mAP), and achieves comparable results to many transfer learning methods. Besides, a model-free temporal cooccurrence based score weighting method called TLift is proposed, which improves the performance to a further extent, achieving state-of-the-art results in cross-dataset person re-identification. Code is available at https://github.com/ShengcaiLiao/QAConv.Comment: This is the ECCV 2020 version, including the appendi

    Support Neighbor Loss for Person Re-Identification

    Full text link
    Person re-identification (re-ID) has recently been tremendously boosted due to the advancement of deep convolutional neural networks (CNN). The majority of deep re-ID methods focus on designing new CNN architectures, while less attention is paid on investigating the loss functions. Verification loss and identification loss are two types of losses widely used to train various deep re-ID models, both of which however have limitations. Verification loss guides the networks to generate feature embeddings of which the intra-class variance is decreased while the inter-class ones is enlarged. However, training networks with verification loss tends to be of slow convergence and unstable performance when the number of training samples is large. On the other hand, identification loss has good separating and scalable property. But its neglect to explicitly reduce the intra-class variance limits its performance on re-ID, because the same person may have significant appearance disparity across different camera views. To avoid the limitations of the two types of losses, we propose a new loss, called support neighbor (SN) loss. Rather than being derived from data sample pairs or triplets, SN loss is calculated based on the positive and negative support neighbor sets of each anchor sample, which contain more valuable contextual information and neighborhood structure that are beneficial for more stable performance. To ensure scalability and separability, a softmax-like function is formulated to push apart the positive and negative support sets. To reduce intra-class variance, the distance between the anchor's nearest positive neighbor and furthest positive sample is penalized. Integrating SN loss on top of Resnet50, superior re-ID results to the state-of-the-art ones are obtained on several widely used datasets.Comment: Accepted by ACM Multimedia (ACM MM) 201
    • …
    corecore