1 research outputs found

    Persistent localization and life-long mapping in changing environments using the frequency map enhancement

    Get PDF
    We present a lifelong mapping and localisation system for long-term autonomous operation of mobile robots in changing environments. The core of the system is a spatio-temporal occupancy grid that explicitly represents the persistence and periodicity of the individual cells and can predict the probability of their occupancy in the future. During navigation, our robot builds temporally local maps and integrates then into the global spatio-temporal grid. Through re-observation of the same locations, the spatio-temporal grid learns the long-term environment dynamics and gains the ability to predict the future environment states. This predictive ability allows to generate time-specific 2d maps used by the robot's localisation and planning modules. By analysing data from a long-term deployment of the robot in a human-populated environment, we show that the proposed representation improves localisation accuracy and the efficiency of path planning. We also show how to integrate the method into the ROS navigation stack for use by other roboticists
    corecore