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Abstract— We present a lifelong mapping and localisation
system for long-term autonomous operation of mobile robots
in changing environments. The core of the system is a spatio-
temporal occupancy grid that explicitly represents the persis-
tence and periodicity of the individual cells and can predict the
probability of their occupancy in the future. During navigation,
our robot builds temporally local maps and integrates then
into the global spatio-temporal grid. Through re-observation
of the same locations, the spatio-temporal grid learns the long-
term environment dynamics and gains the ability to predict
the future environment states. This predictive ability allows to
generate time-specific 2d maps used by the robot’s localisation
and planning modules. By analysing data from a long-term
deployment of the robot in a human-populated environment,
we show that the proposed representation improves localisation
accuracy and the efficiency of path planning. We also show how
to integrate the method into the ROS navigation stack for use
by other roboticists.

Index Terms— mobile robotics, long-term autonomy

I. INTRODUCTION

One of the many challenges that robots have yet to achieve
is long-term autonomous operation in changing environ-
ments. Many tasks performed by mobile robots take place in
environments where humans perform their usual activities,
which causes the environments to change constantly. For
example, doors are open and shut, chairs are pushed in
and out of tables and furniture is occasionally rearranged.
In long-term scenarios, having an environment model that
assumes a static world will inevitably lead to navigation
failures as the robot’s knowledge base becomes obsolete.

In this paper, we propose an architecture for life-long
mapping and persistent localization that is easily integrated
within the ROS framework [1]. Through extension of the
ROS navigation stack by an additional ROS gmapping
module, we obtain a system that can create an up-to-date,
independent environment map on-the-fly. To enforce the
compatibility of the new map with the previous environment
models, we propose to use the position estimates of the ROS
AMCL module as virtual odometry for the gmapping node.

The newly created, independent maps are integrated into
a spatio-temporal occupancy grid where each cell contains
a frequency-spectrum of its past states [2] and allows the
prediction of the cell’s future states. Previous work has
shown that the predictive capabilities of the spectral models
improve visual-based mobile robot localisation [3], naviga-
tion [4] and planning [5]. However, the previous works were
aimed at proof-of-concept verification of the Frequency Map
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Fig. 1: Predicted and created 2D grids with patrol locations.

Environment change example (cubdoard doors open/closed)

Fig. 2: Example of regular changes and corresponding map
predictions for early morning (left) and late afternoon (right).

Enhancement (FreMEn) methods using custom modules that
were not fully integrated in the ROS navigation framework.
In this work, we show that once the ROS navigation stack
is extended so that it allows the creation of new maps,
integration of the FreMEn is straightforward, as it simply
replaces the map server ROS module.

To validate the proposed method, we set up our robot
to routinely patrol a human populated office environment,
which was subject to frequent changes due to the people’s
activity. During each patrol run, which started and ended at
the robot’s charging station, a new map was created and
as soon as the patrol was completed, this new map was
integrated into the FreMEn spatio-temporal model. At the
start of each patrol, the spatio-temporal model predicted a
time-specific map that was used by the robot’s planning and
localization methods. As the model accumulated enough data
to infer the long-term environment dynamics, the predicted
maps started to differ according to the time of the patrols.
For example, the spatio-temporal model predicted that on
weekday afternoons, doors of certain cupboards are more
likely to be open than during nights, see Figure 2.

To evaluate how the predictive capability of our method
affects the efficiency of the robot operation, we provide
statistics on the accuracy of the robot localization, navigation
performance, planning failures and map quality.
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This paper extends the previous work on Frequency Map
Enhancement [2], which allows to introduce dynamics into
most robotic environment models. In particular, we show
that the method can be extended to model not only cyclic-
periodic changes, but also their persistence. We propose an
architectural modification of the ROS navigation stack that
allows for straightforward update of the environment models,
which enables ROS integration of the proposed method in
an elegant and straightforward way. Last, but not least, we
demonstrate that the introduction of the method improves the
efficiency of the robot operation in long-term scenarios.

II. RELATED WORK

Long-term robot navigation is highly dependant on the
precision of the world model, since the robot requires such a
model to localise itself, plan its trajectory and find obstacle
free paths. Creating maps of static environments has been
widely studied for a long time [6]. However, dynamic scenar-
ios, where the world is constantly changing and uncertainty
grows with time, are still an open problem.

Some authors try to handle these dynamics by finding the
most static landmarks and filtering out the ones that change
over time [7]. Another approach involves tracking these
“moving” landmarks and labelling them as dynamic [8].
In general, these approaches can handle some problems of
navigating in a dynamic environment, but they cannot deal
with long-term changes to the structure of the environment.

Other approaches never assume the map to be complete
and perform continuous mapping, adding new features to
the map with every observation [9], [10], [11]. In these ap-
proaches, the key problem is managing map size, especially
in long term scenarios where the robot might be making new
observations for several weeks or months.

To tackle the long-term challenges of robust navigation
in dynamic scenarios, some approaches gather and maintain
different temporal representations simultaneously and choose
the best one according to its consistency with the current
perception of the world (e.g. [9], [12]). However, these
approaches have high memory and computational costs.

To reduce computational cost, many authors have tried
taking these approaches to a discrete, topological level.
where most representations use visual appearance for place
recognition [13], [14]. However, these approaches present a
decrease in robustness when facing long-term changes [15],
as again they are prone to error when features appear and
disappear over time. In [3], [4] dynamic models of the
topological space that explicitly represent the environment
changes and try to identify patterns by means of the Fourier
transform are presented, for both localisation (node level)
and navigation (transitions between nodes). This ability of
pattern identification allows for state prediction, which as
shown in [4] can improve navigation performance. However,
these approaches are limited to higher level planning at the
topological level and there is no model that can be used for
low-level navigation on the node transitions.

Other authors have looked into metric level representations
with state prediction abilities. In [16] the authors propose a

new representation that models occupancy grid maps in the
wavelet space in order to optimize the amount of information
that has to be processed for path planning, and [17] presents
a representation of the environment which models transitions
of dynamic objects in the environment, by learning motion
patterns from the temporal signal of occupancy in a cell.

The approach presented in this paper presents an occu-
pancy grid map where each cell in the map is enhanced
with a spectral model [2] that enables the prediction of
the cell’s state at specific times. We show how localisation
and navigation are improved using such a representation
compared to a static occupancy grid map, which is still the
most common approach.

III. SYSTEM DESCRIPTION

A major drawback of the previously proposed dynamic
mapping techniques is that they are tailored to particular
representations that only work for specific system archi-
tectures. The objective of this work was to develop an
environment representation that is general enough to allow
its use with most of the environment models used in robotics.
Moreover, we wanted the system to be easy to use by other
researchers, and therefore, it was implemented as a module
that is compatible with the navigation stack [18] of the Robot
Operating System (ROS), which is considered a standard
in robotics nowadays. The software presented here is freely
available as a component of the STRANDS system [19].

In principle, the framework allows to keep several spatio-
temporal models that can be used for localisation simul-
tanneously as proposed by [9], [12]. Building a separate
map of the current environment layout allows to postpone
the decision on which of the global spatio-temporal models
will be updated similarly to the experience-based approach
in [12]. This would not be possible with a classic continuous
SLAM approach. In this work, we use only one global spatio-
temporal representation and if the currently built map is
detected as anomalous it is simply rejected.

A. Continuous Mapping with the ROS navigation stack

The traditional configuration of the navigation stack has
four main components, see Figure 3 (left): the robot, which
provides all the necessary sensory input and coordinate
system transformations; the map server, which provides the
map used by the localisation and planning systems, where
this map is usually created in a previous stage; the AMCL
localisation system, which provides position estimates in the
map coordinate frame using the sensory input from the robot;
and a move base motion planner that uses the map, position
estimate and sensor information to plan the robot’s motion.

One of the key requirements of long-term operation is
to keep the environment models up-to-date. In our architec-
ture, a traditional SLAM-based method is used to create a
completely new map every time the robot performs a patrol
run and integrate this single map into the proposed spatio-
temporal representation. The ability to update the environ-
ment map is achieved through a minor modification of the
ROS navigation stack, see Figure 3 (right). The main changes



Fig. 3: Classic and proposed ROS navigation stack.

are the continuous mapping component and the spatio-
temporal representation, called the FreMEn map, which
provides time-specific maps to the other system modules.
Continuous mapping is achieved by setting up the gmapping
module to work in parallel with the rest of the navigation
stack during robot operation and creating a new ‘patrol’ map
for each session, see Figure 3. However, the SLAM-based
gmapping implementation is subject to a slight localisation
drift and running it as a completely separate process would
cause its map to diverge from the global ‘FreMEn’ one,
which would make its integration into the FreMEn map
impossible. To prevent this drift, we inject the output of
the AMCL position estimation in the odometry input of the
gmapping module. This position injection ensures that the
individual cells of the ‘patrol’ and FreMEn maps are well-
aligned with each other and that the cell differences are
caused by environment changes and not by localisation drift.
This makes integration of the ‘patrol’ map into the global one
a straightforward process.

B. FreMEn 2D Grid

The idea of the FreMEn map is based on the observa-
tion that many of the environment states are not changing
chaotically and the nature of their dynamics can be learned
from repeated observations. Thus, the FreMEn map is a
2d occupancy grid that does not represent the uncertainty
of the individual cells by a constant probability, but as a
function of time, which is estimated from re-observations
of the cell occupancy over long time periods. The FreMEn
map can integrate local 2d grids created at different times
(‘patrol maps’) into a global spatio-temporal representation
that captures not only the spatial layout of the environment,
but also the persistence and cyclic behaviour of its changing
states.

From an architectural point of view the FreMEn map
component provides the 2d environment maps in the same
way as the original ROS map server. However, unlike the
map server, which can load, save and transmit static maps
only, the FreMEn map generates time-dependent maps that
reflect the expected environment state at the time of robot
operation.

Although the model update step can be performed at any
time, the mapping process should be long enough to filter
out fluctuations in the environment, and the map update
should only happen when the robot is not moving to avoid
anomalous maps.

C. Anomaly detection

Continuous mapping is exposed to two significant threats.
First, the gmapping method can fail and produce an incorrect
map, which, when integrated into the FreMEn map, might
corrupt the entire spatio-temporal representation. The second
threat is more subtle: due to the environment changes, sensor
noise and localisation inaccuracies, exact registration of the
recently-gathered ‘patrol’ maps with the FreMEn grid is not
absolutely precise. This introduces a certain amount of noise
every time a new map is integrated into the global one. As
the noise accumulates, the global map might become less and
less accurate over time, which might lead to its destruction.

Both effects exhibit themselves at the moment when a
new map is integrated into the FreMEn grid. Therefore, the
FreMEn map checks how much a new map conforms to
the map predicted for that particular time by calculating the
number of cells with incorrectly predicted occupancy. If the
ratio of these cells in the new map is too high we reject this
map as an outlier.

IV. FREQUENCY MAP ENHANCED OCCUPANCY GRID

The spatio-temporal representation at the core of our
approach is a 2d occupancy grid that models the occu-
pancy of each cell by a probabilistic function of time. This
probabilistic function consists of two distinct components:
persistence and periodicity. The persistence component acts
as a short-term memory that represents the expectation that
the cell state did not change since the last observation
if the observation was performed recently. The periodicity
component is related to the fact that from a long-term
perspective (days to months), some of the environment states
might be influenced by hidden periodic processes.

The idea of identifying periodic patterns of binary envi-
ronment states via the Fourier Transform and using them
for future predictions was originally presented in [2]. In our
version of FreMEn, we represent the periodic behaviour of
each cell by its sparse frequency spectrum, which is a set
A of complex numbers αk. These correspond to the set Ω
of modeled periodicities ωk that might be present in the
environment. The persistence of each state is represented
by the mean time between state transitions τ and the time
and value of the last observation tl and s(tl). Moreover, we
store each cell’s number of observations n and the cell’s
mean occupancy µ. When a ‘patrol’ map is integrated in the
FreMEn map, each cell representation is updated as follows:

µ ← 1
n+1 (nµ+ s(t) ),

αk ← 1
n+1 (nαk + s(t)e−jtωk ) ∀ωk ∈ Ω,

1
τ ← 1

n+1 (nτ + |s(t)−s(tl)|
t−tl ),

s(tl) ← s(t),

tl ← t,

n ← n+ 1,

(1)

where s(t) is the occupancy of a given cell in the ‘patrol’
map created at time t. The proposed update step is analogous
to incremental averaging, where the absolute values of |αk|



correspond to the average influence of a periodic process
(with a frequency of ωk) on the values of s(t). Note that
the size of the representation of the state (i.e. the number of
elements in A) is independent of the number of observations,
which means that the memory requirements of the proposed
representation do not grow with time.

To predict the value of state s(t) for a future time t, we
first sort the set A descendingly according to the absolute
values |αk|. Then, we extract the first m elements αl along
with their corresponding frequencies ωl and calculate the
state’s probability over time as

p(t) = s(tl)e
tl−t
τ + f(t)(1− e

tl−t
τ ), (2)

where

f(t) = ς(µ+

m∑
l=1

|2αl|cos(ωkt+ arg(αl))), (3)

where ς(.) ensures that p(t) ∈ [0, 1]. Note that for preditions
which immediatelly follow the last observation, i.e. |t −
tl| << τ , the expression e

tl−t
τ is close to 1, which means

that the expected occupancy would be the same as the one
recently observed. If we use Equation 2 to predict further
into the future, i.e. |t − tl| >> τ , the expression e

tl−t
τ is

close to 0, which supresses the effect of the last observation
on p(t) and emphasizes f(t), which represents the behaviour
of the modelled cell from a long-term perspective.

Note that the choice of m, which determines how many
periodic processes are considered, and Ω, which determines
the periods of the potential cyclic processes, are crucial for
prediction performance. In our case, m was set to 2 and the
ωk = 2π k

86400 , where k ∈ {1, 2, . . . 24}, which allows to model
periodicities ranging from 1 hour up to 1 day.

The model does not expect that the behaviour of the
environment is strictly periodic, but it reflects the fact that
probabilities of the environment states are influenced by
cyclic events. For example, the FreMEn can reflect the
fact that human presence in a research office causes doors
of certain cupboards to be more likely open during the
weekdays than during nights, see Figure 2.

V. EXPERIMENTS

To evaluate the utility of the proposed dynamic map, we
used data gathered during several days of routine autonomous
operation of a mobile robot at the Lincoln Centre for
Autonomous Systems. The SCITOS-G5 mobile robot (see
Figure 4) regularly patrolled a large open-plan office every
ten minutes while recording data from its odometry, RGB-D
and laser range-finder sensors. Its navigation was based on
the ROS navigation stack, which used our FreMEn 2D grid
instead of the traditional map server. To achieve autonomous
operation, the robot uses a precise visual servoing method for
reliable docking to its charging station [20]. Our evaluation
was based on three criteria: localization accuracy, navigation
efficiency and map quality. To evaluate localization accuracy,
we covered part of the environment with an external local-
ization system, which provided us with a ground truth of

Fig. 4: Overview and 2D occupancy map of the Witham
Wharf office.

the robot position with millimetre precision. To quantify the
efficiency of the robot navigation, we measured the time it
took to perform a patrol where the robot had to visit five
different locations. We also measured the times it took for
the robot to navigate through a narrow area that exhibited
regular changes. To assess the quality of the built maps, we
quantified the amount of noise in the maps.

A. Localisation accuracy

To evaluate the accuracy of self-localization, we installed
an independent localisation infrastructure at the Witham
Wharf office, comprising two ceiling-mounted fish eye Ko-
dak PixPro SP360 cameras, a large circular marker on top
of the robot and another set of markers close to the robot’s
charging station. While the marker on the robot’s top was
used to determine its x and y position, the markers at
the charging station area allowed for precise, independent
estimation of the robot heading. Detection and position
estimation of the markers, localisation system calibration
and coordinate system setup was based on a freely-available,
open-source method presented in [20]. To ensure millimetre
accuracy of the localisation system, we had to use rather
large markers as suggested by the mathematical model of
the system [20], see Figure 5. We selected approximately
2000 images in 20 different image sequences captured by the
overhead cameras and established the positions of the robot.
To avoid potential accuracy drop-off caused by the use of
the wide-angle lens cameras, the selected images have the
robot position close to the center of the image.

The individual sequences captured the movement of the
robot through a 1.5 m wide corridor outlined by eight storage
cupboards. These cupboards are used by the research staff of
the office and some of the cupboard doors are typically open
during the day and closed at night. The cupboards are 0.5 m



Fig. 5: Example image captured by the ceiling-mounted
camera of the external localisation system. The circular
marker on top of the robot is used to provide the ground
truth for robot self-localization.

deep, so when a cupboard door is left open, the corridor
appears to be 2 m instead of 1.5 m wide and its center appears
to be offset by 0.25 m. Thus, when moving through this
corridor, the discrepancy of the 2D map with the perceived
environment state might negatively affect the accuracy of
robot self-localization. In our case, the 20 m range of the
robot laser rangefinder ensures that it will almost always
perceive areas that did not change, which should keep the
position estimate accurate. However, if the range of the laser
sensor was shorter, e.g. when using a Hokyo URG04, then
the localization accuracy would be affected severely.

To estimate the impact of the environment change and sen-
sor range on the localization precision, we processed laser,
odometry and ground truth data from 20 different passes of
the robot through the monitored corridor. To emulate the
limited range of the laser rangefinder, we trimmed the laser
data at different lengths. Using the trimmed data from 20
different runs, we performed standard ROS-based AMCL
localisation on the ‘static’, ‘averaged’ and ‘predicted’ 2d
maps and compared the robot positions to the ground truth
from the overhead cameras. The results shown in Figure 6
indicate that use of the time-specific, predicted maps signifi-
cantly improves the localization precision if the range of the
laser rangefinder is lower than the overall map size. If the
rangefinder provides a complete overview of the operational
environment, the reduction of the position estimation error
is only marginal. However, a small difference in localization
precision can have a significant impact on the efficiency of
the robot navigation and quality of the constructed maps.

B. Navigation efficiency

To evaluate the navigation efficiency, we processed naviga-
tion statistics of 60 different patrol runs. During each patrol,
the robot undocked from its charging station, visited several
different locations in the office (see Figure 2) and returned
to recharge. The data from each patrol run contains the
robot’s average speed and the number of ‘recovery events’
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Fig. 6: Localization error for different ranges of the laser
scanner and different types of the maps. Predicting a map
for a particular time improves localization accuracy, although
the improvement is only marginal for long-range sensors.

where standard navigation behaviour failed and the robot
had to perform custom recovery behaviours in order to
avoid a collision and proceed with its patrol. The gathered
navigation statistics were divided into three groups of 20
patrols each. The first group contained patrols at weekends,
where the number of environment changes in the office
is rather low. The second group contained patrols from
weekday afternoons, where the robot used an ‘averaged’
map, which slowly adapts to the observed changes. The third
group contained patrols from weekday afternoons, where the
robot used a ‘predicted’, time specific map. In the latter
two cases, the number of environment changes introduced
by ∼20 researchers of the open-plan office was relatively
high. Table I indicates that in a static environment, the robot

TABLE I: Navigation statistics

Environment Static Changing
Map Static Static Predicted

Average speed [m
s

] 0.21 0.16 0.18
Recovery events [-] 3 21 13

could navigate efficiently even when using a static map, but
as soon as the environment began to change, the navigation
efficiency was affected negatively. However, this negative
effect was lowered slightly through the use of the proposed
map, which explictly represents the environment changes.

C. Map quality

This experiment evaluates the effect of the anomalous map
detection mechanism. This mechanism verifies whether a
newly created map conforms with the representation that was
gathered so far, which allows to reject corrupt or otherwise
incorrect maps. To verify the utility of the anomaly detection
mechanism, we replayed laser and odometry data from 70
consecutive patrols with the anomaly detection component
being deactivated and compared the resulting spatio-temporal
representation with the one built while the anomaly detection
was used to reject potentially corrupted maps. Figure 7 shows
the percentage of incorrectly predicted cells in the consecu-
tively created maps. The figure shows that at a certain point



(run 36), integration of an incorrect map corrupts the FreMEn
grid, which breaks the map update process. However, the
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Fig. 7: Effect of anomalous map detection and rejection. The
peak in the graph indicates mapping failure and consequent
discrepancy of the individual maps. The two maps show the
resulting models with and without anomaly rejection.

anomalous map rejection mechanism prevents this situation
and the map update process continues to produce a faithful
2D environment model.

VI. CONCLUSION

We presented an approach for persistent localization and
mapping in changing environments. First, we show that the
ability to update the environment model does not require
introduction of custom modules to the ROS navigation
stack. Instead, the navigation stack can be augmented by an
alternative gmapping module that builds a new map every
time the robot navigates around its operational environment.
To ensure that the new map is consistent with the previously
built model, we propose to use the AMCL module position
estimation as virtual odometry for gmapping. Second, we
demonstrate that maps of the individual navigation runs can
be integrated into a spatio-temporal model that captures the
persistence and periodicity of the environment changes. This
spatio-temporal environment representation, which explicitly
models the environment dynamics, is used to predict time-
specific maps, which serve our robot both for localization,
path-planning and navigation.

Our experimental evaluation, based on data gathered over
the course of several weeks, shows that using the model’s
predictive capabilities improves the accuracy of robot local-
ization and efficiency of navigation. The tests indicate that
the proposed environment model is especially beneficial for
mobile robots that do not have a complete overview of their
environment, e.g. due to the limited sensor range such as
when operating outdoors or in large warehouses.

While encouraging, the experiments were too short to
demonstrate that the proposed method enables life-long

autonomous operation in changing environments. Therefore,
as part of our project goals [19], we plan the deployment
of the method on a mobile robot that will operate at a large
care home for a period of four months.

Moreover, we plan to extend the anomaly detection mech-
anism so that an anomalous map would not be rejected, but
stored as an alternative map. This alternative map would
represent a hypothesis that that the map change was caused
by an actual environment change rather than mapping mal-
function. This could result in additional robustness of the
system to significant environment changes.
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[14] C. Cadena, D. Gálvez-López, J. D. Tardós, and J. Neira, “Robust place
recognition with stereo sequences,” IEEE Trans. on Robotics, 2012.

[15] F. Dayoub, G. Cielniak, and T. Duckett, “Long-term experiments with
an adaptive spherical view representation for navigation in changing
environments,” Robotics and Autonomous Systems, 2011.

[16] M. Yguel, O. Aycard, and C. Laugier, “Wavelet occupancy grids: a
method for compact map building,” in Field and Service Robotics.
Springer, 2006, pp. 219–230.

[17] T. Kucner, J. Saarinen, M. Magnusson, and A. Lilienthal, “Conditional
transition maps: Learning motion patterns in dynamic environments,”
in Proc. IROS, 2013.

[18] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige,
“The office marathon: Robust navigation in an indoor office environ-
ment,” in Proc. ICRA, May 2010, pp. 300–307.

[19] “Spatio-temporal representations and activities for cognitive control
in long-term scenarios,” [Cit: 2016-02-29]. [Online]. Available:
http://www.strands-project.eu

[20] T. Krajnı́k, M. Nitsche, J. Faigl, P. Vaněk, M. Saska, L. Přeučil,
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