323 research outputs found

    A Review of Research on Privacy Protection of Internet of Vehicles Based on Blockchain

    Get PDF
    Numerous academic and industrial fields, such as healthcare, banking, and supply chain management, are rapidly adopting and relying on blockchain technology. It has also been suggested for application in the internet of vehicles (IoV) ecosystem as a way to improve service availability and reliability. Blockchain offers decentralized, distributed and tamper-proof solutions that bring innovation to data sharing and management, but do not themselves protect privacy and data confidentiality. Therefore, solutions using blockchain technology must take user privacy concerns into account. This article reviews the proposed solutions that use blockchain technology to provide different vehicle services while overcoming the privacy leakage problem which inherently exists in blockchain and vehicle services. We analyze the key features and attributes of prior schemes and identify their contributions to provide a comprehensive and critical overview. In addition, we highlight prospective future research topics and present research problems

    Achieving cybersecurity in blockchain-based systems: a survey

    Get PDF
    With The Increase In Connectivity, The Popularization Of Cloud Services, And The Rise Of The Internet Of Things (Iot), Decentralized Approaches For Trust Management Are Gaining Momentum. Since Blockchain Technologies Provide A Distributed Ledger, They Are Receiving Massive Attention From The Research Community In Different Application Fields. However, This Technology Does Not Provide With Cybersecurity By Itself. Thus, This Survey Aims To Provide With A Comprehensive Review Of Techniques And Elements That Have Been Proposed To Achieve Cybersecurity In Blockchain-Based Systems. The Analysis Is Intended To Target Area Researchers, Cybersecurity Specialists And Blockchain Developers. For This Purpose, We Analyze 272 Papers From 2013 To 2020 And 128 Industrial Applications. We Summarize The Lessons Learned And Identify Several Matters To Foster Further Research In This AreaThis work has been partially funded by MINECO, Spain grantsTIN2016-79095-C2-2-R (SMOG-DEV) and PID2019-111429RB-C21 (ODIO-COW); by CAM, Spain grants S2013/ICE-3095 (CIBERDINE),P2018/TCS-4566 (CYNAMON), co-funded by European Structural Funds (ESF and FEDER); by UC3M-CAM grant CAVTIONS-CM-UC3M; by the Excellence Program for University Researchers, Spain; and by Consejo Superior de Investigaciones Científicas (CSIC), Spain under the project LINKA20216 (“Advancing in cybersecurity technologies”, i-LINK+ program)

    Trajectory Privacy Preservation and Lightweight Blockchain Techniques for Mobility-Centric IoT

    Get PDF
    Various research efforts have been undertaken to solve the problem of trajectory privacy preservation in the Internet of Things (IoT) of resource-constrained mobile devices. Most attempts at resolving the problem have focused on the centralized model of IoT, which either impose high delay or fail against a privacy-invading attack with long-term trajectory observation. These proposed solutions also fail to guarantee location privacy for trajectories with both geo-tagged and non-geo-tagged data, since they are designed for geo-tagged trajectories only. While a few blockchain-based techniques have been suggested for preserving trajectory privacy in decentralized model of IoT, they require large storage capacity on resource-constrained devices and can only provide conditional privacy when a set of authorities governs the blockchain. This dissertation addresses these challenges to develop efficient trajectory privacy-preservation and lightweight blockchain techniques for mobility-centric IoT. We develop a pruning-based technique by quantifying the relationship between trajectory privacy and delay for real-time geo-tagged queries. This technique yields higher trajectory privacy with a reduced delay than contemporary techniques while preventing a long-term observation attack. We extend our study with the consideration of the presence of non-geo-tagged data in a trajectory. We design an attack model to show the spatiotemporal correlation between the geo-tagged and non-geo-tagged data which undermines the privacy guarantee of existing techniques. In response, we propose a methodology that considers the spatial distribution of the data in trajectory privacy-preservation and improves existing solutions, in privacy and usability. With respect to blockchain, we design and implement one of the first blockchain storage management techniques utilizing the mobility of the devices. This technique reduces the required storage space of a blockchain and makes it lightweight for resource-constrained mobile devices. To address the trajectory privacy challenges in an authority-based blockchain under the short-range communication constraints of the devices, we introduce a silence-based one of the first technique to establish a balance between trajectory privacy and blockchain utility. The designed trajectory privacy- preservation techniques we established are light- weight and do not require an intermediary to guarantee trajectory privacy, thereby providing practical and efficient solution for different mobility-centric IoT, such as mobile crowdsensing and Internet of Vehicles

    Towards Secure Blockchain-enabled Internet of Vehicles: Optimizing Consensus Management Using Reputation and Contract Theory

    Full text link
    In Internet of Vehicles (IoV), data sharing among vehicles is essential to improve driving safety and enhance vehicular services. To ensure data sharing security and traceability, highefficiency Delegated Proof-of-Stake consensus scheme as a hard security solution is utilized to establish blockchain-enabled IoV (BIoV). However, as miners are selected from miner candidates by stake-based voting, it is difficult to defend against voting collusion between the candidates and compromised high-stake vehicles, which introduces serious security challenges to the BIoV. To address such challenges, we propose a soft security enhancement solution including two stages: (i) miner selection and (ii) block verification. In the first stage, a reputation-based voting scheme for the blockchain is proposed to ensure secure miner selection. This scheme evaluates candidates' reputation by using both historical interactions and recommended opinions from other vehicles. The candidates with high reputation are selected to be active miners and standby miners. In the second stage, to prevent internal collusion among the active miners, a newly generated block is further verified and audited by the standby miners. To incentivize the standby miners to participate in block verification, we formulate interactions between the active miners and the standby miners by using contract theory, which takes block verification security and delay into consideration. Numerical results based on a real-world dataset indicate that our schemes are secure and efficient for data sharing in BIoV.Comment: 12 pages, submitted for possible journal publicatio
    • 

    corecore