380 research outputs found

    Integrating the Supply Chain with RFID: A Technical and Business Analysis

    Get PDF
    This paper presents an in-depth analysis of the technical and business implications of adopting Radio Frequency Identification (RFID) in organizational settings. The year 2004 marked a significant shift toward adopting RFID because of mandates by large retailers and government organizations. The use of RFID technology is expected to increase rapidly in the next few years. At present, however, initial barriers against widespread adoption include standards, interoperability, costs, forward compatibility, and lack of familiarity. This paper describes basic components of an RFID system including tags, readers, and antennas and how they work together using an integrated supply chain model. Our analysis suggests that business needs to overcome human resource scarcity, security, legal and financial challenges and make informed decision regarding standards and process reengineering. The technology is not fully mature and suffers from issues of attenuation and interference. A laboratory experiment conducted by the authors\u27 shows that the middleware is not yet at a plug-and-play stage, which means that initial adopters need to spend considerable effort to integrate RFID into their existing business processes. Appendices contain a glossary of common RFID terms, a list of RFID vendors and detailed findings of the laboratory experiment. NOTE: BECAUSE OF THE ILLUSTRATIONS USED, THIS ARTICLE IS LONG; APPROXIMATELY 850KB IN BOTH JOURNAL AND ARTICLE VERSIO

    Methodology for Testing RFID Applications

    Get PDF
    Radio Frequency Identification (RFID) is a promising technology for process automation and beyond that capable of identifying objects without the need for a line-of-sight. However, the trend towards automatic identification of objects also increases the demand for high quality RFID applications. Therefore, research on testing RFID systems and methodical approaches for testing are needed. This thesis presents a novel methodology for the system level test of RFID applications. The approach called ITERA, allows for the automatic generation of tests, defines a semantic model of the RFID system and provides a test environment for RFID applications. The method introduced can be used to gradually transform use cases into a semi-formal test specification. Test cases are then systematically generated, in order to execute them in the test environment. It applies the principle of model based testing from a black-box perspective in combination with a virtual environment for automatic test execution. The presence of RFID tags in an area, monitored by an RFID reader, can be modelled by time-based sets using set-theory and discrete events. Furthermore, the proposed description and semantics can be used to specify RFID systems and their applications, which might also be used for other purposes than testing. The approach uses the Unified Modelling Language to model the characteristics of the system under test. Based on the ITERA meta model test execution paths are extracted directly from activity diagrams and RFID specific test cases are generated. The approach introduced in this thesis allows to reduce the efforts for RFID application testing by systematically generating test cases and the automatic test execution. In combination with meta model and by considering additional parameters, like unreliability factors, it not only satisfies functional testing aspects, but also increases the confidence in the robustness of the tested application. Mixed with the instantly available virtual readers, it has the potential to speed up the development process and decrease the costs - even during the early development phases. ITERA can be used for highly automated testing, reproducible tests and because of the instantly available readers, even before the real environment is deployed. Furthermore, the total control of the RFID environment enables to test applications which might be difficult to test manually. This thesis will explain the motivation and objectives of this new RFID application test methodology. Based on a RFID system analysis it proposes a practical solution on the identified issues. Further, it gives a literature review on testing fundamentals, model based test case generation, the typical components of a RFID system and RFID standards used in industry.Integrative Test-Methodology for RFID Applications (ITERA) - Project: Eurostars!5516 ITERA, FKZ 01QE1105

    A secure localization framework of RAIN RFID objects for ambient assisted living

    Get PDF
    Internet of things (IoT) is currently on our doorsteps. Numerous domains have beneted from this technology. It ranges from a simple application such as identifying an object up to handling a more complex system. The Radio Frequency IDentication (RFID) is one of the enabling technologies that drive the IoT to its position today. It is small, cheap and does not require any additional power sources. Along with its ubiquitous functionality, this technology enables the positioning of an object within a specic area. Ambient Assisted Living (AAL) is one of the many domains that benet from the IoT. It aims at assisting elderly people in their daily routines by providing new assistive services in smart homes for instance. RFIDs in a smart home come as a great help to an elderly person, for example, to nd an object that they misplaced. However, even with all its benets in simplifying our lives, it is unfortunately double-edged where the advantage that it brings to an object could in turn go against itself. Indeed to be able to help the older adults to locate an object, the system requires certain data in relation to the positioning of the object and its identication. As the passive RFID tag coverage is very small, once its presence is detected, it is dicult to hide it. The ability of this technology in localizing objects gives an opportunity to a third person to take an advantage of the system. In parallel with the persistent and constant need of privacy and secrecy by the users, the objective of this thesis consists of improving the privacy in localizing an object through a new protocol based on the latest version of the RFID second generation passive tag. The proposed protocol must be able to prevent an object from being identied and located by unauthorized parties or a malicious reader. The rst contribution of this work is the assessment of the RFID anti collision management. It is performed through the creation of an OMNET++ framework, modelled and built based on the latest RFID standard developed by GS1 and incorporated by ISO/IEC called Gen2V2 (RFID class 2 Generation 2 Version 2). It is a passive RFID tag that does not require any internal power sources to operate. It communicates using the UHF frequency. The Gen2V2 standard provides a list of cryptographical suites that can be used as a method to authenticate a tag and a reader. This new generation of tags is supported by an alliance of manufacturers called RAIN (RAdio frequency IdenticatioN) that promotes the adoption of the Gen2V2. The anti collision management overall performance is then compared with its theoretical value and four of its cryptographical suites namely PRESENT80, XOR, AES128 and cryptoGPS. Among the performances evaluated within the framework is the number of collisions and the duration required to interrogate a group of tags. Note that an addition of a localization functionality within the framework reveals that exchanged messages through wireless channel prior to the authentication can lead to a malicious localization of an object. To increase the localization privacy within AAL application, we propose therefore a second contribution which is a new localization method that is based on the current Gen2V2 standard exchanges by anonymizing the tag identity

    Advanced Information Systems and Technologies

    Get PDF
    This book comprises the proceedings of the VI International Scientific Conference “Advanced Information Systems and Technologies, AIST-2018”. The proceeding papers cover issues related to system analysis and modeling, project management, information system engineering, intelligent data processing, computer networking and telecomunications, modern methods and information technologies of sustainable development. They will be useful for students, graduate students, researchers who interested in computer science

    Magnetic Flux Leakage techniques for detecting corrosion of pipes

    Get PDF
    Oil and gas pipelines are subjected to corrosion due to harsh environmental conditions as in refinery and thermal power plants. Interesting problems such as internal and external corrosion, emerging from the increasing demand for pipeline protection have prompted this study. Thus, early detection of faults in pipes is essential to avoid disastrous outcomes. The research work presented in this thesis comprises investigations into the use of magnetic flux leakage (MFL) testing for pipe in extreme (underwater and high temperature) conditions. The design of a coil sensor (ferrite core with coil) with a magnetic circuit is carried out for high temperature conditions. The sensor thus developed lays the ground for non-destructive evaluation (NDE) of flaws in pipes through the MFL technique. The research focusses on the detection and characterization of MFL distribution caused by the loss of metal in ferromagnetic steel pipes. Experimental verifications are initially conducted with deeply rusted pipe samples of varying thicknesses in air. AlNiCo magnets are used along with Giant Magneto Resistance (GMR) sensor (AA002-02). The experiment is further repeated for saltwater conditions in relation to varying electrical conductivity with radio frequency identification (RFID) technique. A further study carried out in the research is the correlation between magnetic and underwater data communication. The study has resulted in the development and experimental evaluation of a coil sensor with its magnetic response at room and high temperatures. This makes the system effective under high temperature conditions where corrosion metal loss needs to be determined
    corecore