25,016 research outputs found
Refurbishing Pacemakers: A Viable Approach
Cardiologists implant permanent pacemakers widely for indications like sick sinus syndrome and complete heart block. The guidelines for such implantations are well established1. However, in developing countries like India, all patients who need pacemakers do not receive them because of financial constraints. Even when such patients get a pacemaker, it is often a more affordable VVI pacemaker rather than the costly DDD pacemaker. The lack of a health insurance scheme and improper social support programs prevent the more widespread implantation of appropriate pacemakers.
However, in the developed countries and in affluent pockets of developing countries like India, the pacemaker implantation rates are quite high. Often permanent pacemakers are implanted in the very old and people with predicted brief longevities, due to medico-legal and other social reasons. There are quite a few instances when pacemakers are explanted within a year or even within a few months. This is often due to the unfortunate death of the patient due to unrelated causes. Such pacemakers have battery lives, which are near normal. These can be explanted from the dead patient after taking consent from the relatives and “refurbished” for use in another needy patient. Refurbishing involves proper re-sterilization, checking of battery life, pacing mode and other parameters and re-labelling with the current parameters including predicted battery life. These refurbished pacemakers are a suitable alternative for the financially ‘no option’ group of patients who otherwise would not afford a pacemaker. These can last nearly as long as the original pacemakers. Even pulse generators whose shelf lives have expired can also be resterilised and used gainfully for the economically deprived
Transient complete heart block following catheter ablation of a left lateral accessory pathway.
A 16-year-old female with symptomatic Wolff-Parkinson-White (WPW) syndrome underwent catheter ablation of a left-sided lateral accessory pathway. The accessory pathway was eliminated with the first ablation lesion; however, the patient immediately developed complete heart block (CHB). At first, complete heart block was thought to be due to ablation of left atrial extension of the AV node, and pacemaker therapy was considered. However, careful ECG analysis revealed that the development of CHB was in fact due to bump injury to the AV node during transseptal catheterization. Conservative management allowed resolution of AV nodal conduction without need for a permanent pacemaker
Single chamber permanent epicardial pacing for children with congenital heart disease after surgical repair
BACKGROUND: To analyze the 10-year experience of single chamber permanent epicardial pacemaker placement for children with congenital heart diseases (CHD) after surgical repair. METHODS: Between 2002 and 2014, a total of 35 patients with CHD (age: 26.9 ± 23.2 months, weight: 9.7 ± 5.6 kg) received permanent epicardial pacemaker placement following corrective surgery. Echocardiography and programming information of the pacemaker, as well as major adverse cardiac events (MACE) as heart failure or sudden death, were recorded during follow-up (46.8 ± 33.8 months). RESULTS: Acute ventricular stimulation threshold was 1.34 ± 0.72 V and no significant increase was observed at the last follow-up as 1.37 ± 0.81 V (p = 0.93). Compared with initial pacemaker implantation, the last follow-up didn’t show significant increases in impedance (p = 0.327) or R wave (p = 0.635). Four patients received pacemaker replacement because of battery depletion. 7/35 (20 %) of patients experienced MACE. Although the age and body weight were similar between patients with and without MACE, the patients with MACE were with complex CHD (100 % vs.55.6 %, p = 0.04). CONCLUSION: High-degree iatrogenic atrioventricular block was the primary reason for placement of epicardial pacemaker for patients with CHD after surgical repair. Pacemaker placement with the steroid-eluting leads results in acceptable outcomes, however, the pacemaker type should be optimized for the children with complex CHD
New Concepts in Pacemaker Syndrome
After implantation of a permanent pacemaker, patients may experience severe symptoms of dyspnea, palpitations, malaise, and syncope resulting from pacemaker syndrome. Although pacemaker syndrome is most often ascribed to the loss of atrioventricular (A-V) synchrony, more recent data may also implicate left ventricular dysynchrony caused by right ventricular pacing. Previous studies have not shown reductions in mortality or stroke with rate-modulated dual-chamber (DDDR) pacing as compared to ventricular-based (VVI) pacing. The benefits in A-V sequential pacing with the DDDR mode are likely mitigated by the interventricular (V-V) dysynchrony imposed by the high percentage of ventricular pacing commonly seen in the DDDR mode. Programming DDDR pacemakers to encourage intrinsic A-V conduction and reduce right ventricular pacing will likely decrease heart failure and pacemaker syndrome. Studies are currently ongoing to address these questions
Dual chamber pacemaker implants--a new opportunity in Pakistan for children with congenital and acquired complete heart block
Implantation of cardiac pacemakers has been practiced for at least five decades with continuous developments of the hardware. The invention of dual chamber pacemakers has initiated a debate concerning its superiority over single chamber ventricular pacemakers. Throughout the world, surgeons have been using dual chambered permanent pacemakers with successful follow ups. However, Pakistan has not yet taken the advantage of such pacemaker devices till now. We report three cases that underwent a dual chamber permanent pacemaker implantation for the first time in children less than 8 kg with successful follow ups
Endocardial Pacemaker Implantation in Neonates and Infants
Transvenous pacemaker lead implantation is the preferred method of pacing in adult patients. Lead performance and longevity are superior and the implantation approach can be performed under local anaesthetic with a very low morbidity. In children, and especially in neonates and infants, the epicardial route was traditionally chosen until the advent of smaller generators and lead implantation techniques that allowed growth of the child without lead displacement. Endocardial implantation is not universally accepted, however, as there is an incidence of venous occlusion of the smaller veins of neonates and infants with concerns for loss of venous access in the future. Growing experience with lower profile leads, however, reveals that endocardial pacing too can be performed with low morbidity and good long-term results in neonates and infants
Pacemaker Prevention Therapy in Drug–refractory Paroxysmal Atrial Fibrillation: Reliability of Diagnostics and Effectiveness of Prevention Pacing Therapy in Vitatron™ Selection® device
Introduction. Atrial fibrillation (AF), the most common and rising disorder of cardiac rhythm, is quite difficult to control and/or to treat. Non pharmacological therapies for AF may involve the use of dedicated pacing algorithms to detect and prevent atrial arrhythmia that could be a trigger for AF onset. Selection 900E/AF2.0 Vitatron DDDRP pacemaker (1) keeps an atrial arrhythmia diary thus providing detailed onset reports of arrhythmias of interest, (2) provides us data about the number of premature atrial contractions (PACs) and (3) plots heart rate in the 5 minutes preceding the detection of an atrial arrhythmia. Moreover, this device applies four dedicated pacing therapies to reduce the incidence of atrial arrhythmia and AF events.
Aim of the Study. To analyze the reliability to record atrial arrhythmias and evaluate effectiveness of its AF preventive pacing therapies.
Material and Methods. We enrolled 15 patients (9 males and 6 females, mean age of 71±5 years, NYHA class I–II), with a DDDRP pacemaker implanted for a “bradycardia–tachycardia” syndrome, with advanced atrioventricular conduction disturbances. We compared the number and duration of AF episodes’ stored in the device with a contemporaneous 24h Holter monitoring. After that, we switched on the atrial arrhythmias detecting algorithms, starting from an atrial rate over 180 beats per minute for at least 6 ventricular cycles, and ending with at least 10 ventricular cycles in sinus rhythm. Thereafter, in order to evaluate the possible reduction in PACs number and in number and duration of AF episodes, we tailored all the four pacing preventive algorithms. Patients were followed for 24±8 months (from 20 to 32 months).
Results. All 59 atrial arrhythmia episodes occurred in the first part of this trial, were correctly recorded by both systems, with a correlation coefficient (r) of 0.96. During the follow–up, we observed a significant reduction not only in PACs number (from 83±12/day to 2.3±0.8/day) but also in AF episodes (from 46±7/day to 0.12±0.03/day) and AF burden (from 93%±6% to 0.3%±0.06%). An increase in atrial pacing percentages (from 3%±0.5% to 97%±3%) was also contemporaneously observed.
Conclusion. In this pacemaker, detection of atrial arrhythmia episodes is highly reliable, thus making available an appropriate monitoring of heart rhythm, mainly suitable in AF asymptomatic patients. Moreover, the significant reduction of atrial arrhythmia episodes indicates that this might represent a suitable therapeutic option for an effective preventive therapy of AF in paced brady–tachy patients
Diastolic And Systolic Right Ventricular Dysfunction Precedes Left Ventricular Dysfunction In Patients Paced From Right Ventricular Apex
Background: Cardiac dysfunction after right ventricular (RV) apical pacing is well known but its extent, time frame of appearance and individual effect on left ventricular (LV), RV systolic and diastolic parameters has not evaluated in a systematic fashion.
Methods: Patients with symptomatic bradycardia and ACC-AHA Class I indication for permanent pacemaker implantation (PPI) were implanted a single chamber (VVI) pacemaker. They were followed prospectively by echocardiographic examination which was done at baseline, 1 week, 1 month and 6 months after implantation. Parameters observed were chamber dimensions (M-line), chamber volumes, cardiac output (modified Simpson's method), systolic functions (ejection fraction, pre-ejection period, ejection time and ratio) and diastolic functions( isovolumic relaxation time & deceleration time) of left and right heart.
Results: Forty eight consecutive patients (mean age 65.6±11.8 yrs, 66.7% males, mean EF 61.82±10.36%) implanted a VVI pacemaker were enrolled in this study. The first significant change to appear in cardiac function after VVI pacing was in diastolic properties of RV as shown by increase in RV isovolumic relaxation time (IVRT) from 65.89±15.93 to 76.58±17.00 ms,(p<0.001) at 1week and RV deceleration time (DT) from 133.84±38.13 to 153.09±31.41 ms, (p=0.02) at 1 month. Increase in RV internal dimension (RVID) from 1.26±0.41 to 1.44±0.44, (p<0.05) was also noticed at 1 week. The LV diastolic parameters were significantly altered after 1 month with increase in LV-IVRT from 92.36±21.47 to 117.24±27.21ms, (p<0.001) and increase in LV DT from 147.56±31.84 to 189.27±28.49ms,(p<0.01). This was followed by LV systolic abnormality which appeared at 6 months with an increase in LVPEP from 100.33±14.43 to 118.41±21.34ms, (p<0.001) and increase in LVPEP/LVET ratio from 0.34±0.46 to 0.44±0.10, (p<0.001)]. The reduction in LV EF was manifested at 6 months falling from 61.82±10.36% to52.52±12.11%, (p<0.05) without any significant change in the resting cardiac output.
Conclusion: The present study shows that dysfunction of right ventricle is the first abnormality that occurs in VVI paced patients, which manifests by 1 week followed by LV dysfunction which starts appearing by 1 month and the diastolic dysfunctions precede the systolic dysfunction in both ventricles
- …
