148 research outputs found

    Peristaltic Transport of a Couple Stress Fluid: Some Applications to Hemodynamics

    Full text link
    The present paper deals with a theoretical investigation of the peristaltic transport of a couple stress fluid in a porous channel. The study is motivated towards the physiological flow of blood in the micro-circulatory system, by taking account of the particle size effect. The velocity, pressure gradient, stream function and frictional force of blood are investigated, when the Reynolds number is small and the wavelength is large, by using appropriate analytical and numerical methods. Effects of different physical parameters reflecting porosity, Darcy number, couple stress parameter as well as amplitude ratio on velocity profiles, pumping action and frictional force, streamlines pattern and trapping of blood are studied with particular emphasis. The computational results are presented in graphical form. The results are found to be in good agreement with those of Shapiro et. al \cite{r25} that was carried out for a non-porous channel in the absence of couple stress effect. The present study puts forward an important observation that for peristaltic transport of a couple stress fluid during free pumping when the couple stress effect of the fluid/Darcy permeability of the medium, flow reversal can be controlled to a considerable extent. Also by reducing the permeability it is possible to avoid the occurrence of trapping phenomenon

    Effect of an Inclined Magnetic Field on the Flow of Nanofluids in a Tapered Asymmetric Porous Channel with Heat Source/Sink and Chemical Reaction

    Get PDF
    This article deals with the effect of an inclined magnetic field with heat source/sink on the flow of nanofluids in a tapered asymmetric porous channel. Effect of chemical reaction has been taken into account. The blood is considered as an incompressible electrically conducting viscous fluid. The assumption of low Reynolds number and long wave length approximations has been adopted. Exact solutions for dimensionless axial velocity, concentration and temperature profile are obtained analytically. The obtained results are displayed and discussed in detail with the help of graphs for the variation of different emerging flow parameters

    Effect of Peripheral Layer on Peristaltic Transport of a Micropolar Fluid

    Get PDF
    Peristaltic transport of two fluid model with micropolar fluid in the core region and Newtonian fluid in the peripheral layer is studied under the assumptions of long wavelength and low Reynolds number. The linearised equations governing the flow are solved and closed form expressions for pressure rise, time averaged flux and frictional force have been obtained. The effects of various parameters on these flow variables have been studied. It is found that the pressure rise increases with micropolar parameter (m) and central mean radius (η), but decreases with coupling number (N) and viscosity ratio (µ¯). The frictional force (F¯) decreases with coupling number (N) and viscosity ratio (µ¯) but increases with micropolar parameter (m) and mean radius of central layer (η)

    Mathematical modelling of pressure-driven micropolar biological flow due to metachronal wave propulsion of beating cilia

    Get PDF
    In this paper, we present an analytical study of pressure-driven flow of micropolar non-Newtonian physiological fluids through a channel comprising two parallel oscillating walls. The cilia are arranged at equal intervals and protrude normally from both walls of the infinitely long channel. A metachronal wave is generated due to natural beating of cilia and the direction of wave propagation is parallel to the direction of fluid flow. Appropriate expressions are presented for deformation via longitudinal and transverse velocity components induced by the ciliary beating phenomenon with cilia assumed to follow elliptic trajectories. The conservation equations for mass, longitudinal and transverse (linear) momentum and angular momentum are reduced in accordance with the long wavelength and creeping Stokesian flow approximations and then normalized with appropriate transformations. The resulting non-linear moving boundary value problem is solved analytically for constant micro-inertia density, subject to physically realistic boundary conditions. Closed-form expressions are derived for axial velocity, angular velocity, volumetric flow rate and pressure rise. The transport phenomena are shown to be dictated by several non-Newtonian parameters, including micropolar material parameter and Eringen coupling parameter, and also several geometric parameters, viz eccentricity parameter, wave number and cilia length. The influence of these parameters on streamline profiles (with a view to addressing trapping features via bolus formation and evolution), pressure gradient and other characteristics are evaluated graphically. Both axial and angular velocities are observed to be substantially modified with both micropolar rheological parameters and furthermore are significantly altered with increasing volumetric flow rate. Free pumping is also examined. An inverse relationship between pressure rise and flow rate is computed which is similar to that observed in Newtonian fluids. The study is relevant to hemodynamics in narrow capillaries and also bio-inspired micro-fluidic devices

    Electro-osmotic flow of couple stress fluids in a microchannel propagated by peristalsis

    Get PDF
    A mathematical model is developed for electro-osmotic peristaltic pumping of a non-Newtonian liquid in a deformable micro-channel. Stokes’ couple stress fluid model is deployed to represent realistic working liquids. The Poisson-Boltzmann equation for electric potential distribution is implemented owing to the presence of an electrical double layer (EDL) in the micro-channel. Using long wavelength, lubrication theory and Debye-Huckel approximations, the linearized transformed dimensionless boundary value problem is solved analytically. The influence of electro-osmotic parameter (inversely proportional to Debye length), maximum electro-osmotic velocity (a function of external applied electrical field) and couple stress parameter on axial velocity, volumetric flow rate, pressure gradient, local wall shear stress and stream function distributions is evaluated in detail with the aid of graphs. The Newtonian fluid case is retrieved as a special case with vanishing couple stress effects. With increasing couple stress parameter there is a significant elevation in axial pressure gradient whereas the core axial velocity is reduced. An increase in electro-osmotic parameter induces both flow acceleration in the core region (around the channel centreline) and also enhances axial pressure gradient substantially. The study is relevant to simulation of novel smart bio-inspired space pumps, chromatography and medical microscale devices

    The Wall Properties Effect on Peristaltic Transport of Micropolar Non-Newtonian Fluid with Heat and Mass Transfer

    Get PDF
    The problem of the unsteady peristaltic mechanism with heat and mass transfer of an incompressible micropolar non-Newtonian fluid in a two-dimensional channel. The flow includes the viscoelastic wall properties and micropolar fluid parameters using the equations of the fluid as well as of the deformable boundaries. A perturbation solution is obtained, which satisfies the momentum, angular momentum, energy, and concentration equations for case of free pumping (original stationary fluid). Numerical results for the stream function, temperature, and concentration distributions are obtained. Several graphs of physical interest are displayed and discussed

    Magnetohydrodynamic free convection boundary layer Flow of non-Newtonian tangent hyperbolic fluid from a vertical permeable cone with variable temperature

    Get PDF
    The nonlinear, non-isothermal steady-state boundary layer flow and heat transfer of an incompressible tangent hyperbolic non-Newtonian (viscoelastic) fluid from a vertical permeable cone with magnetic field are studied. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using the second-order accurate implicit finite difference Keller-box technique. The numerical code is validated with previous studies. The influence of a number of emerging non-dimensional parameters, namely a Weissenberg number (We), rheological power law index (m), surface temperature exponent (n), Prandtl number (Pr), magnetic parameter (M) suction/injection parameter (fw) and dimensionless tangential coordinate (ξ) on velocity and temperature evolution in the boundary layer regime, is examined in detail. Furthermore, the effects of these parameters on surface heat transfer rate and local skin friction are also investigated. It is observed that velocity, surface heat transfer rate and local skin friction are reduced with increasing Weissenberg number, but temperature is increased. Increasing m enhances velocity and surface heat transfer rate but reduces temperature and local skin friction. An increase in non-isothermal power law index (n) is observed to decrease the velocity and temperature. Increasing magnetic parameter (M) is found to decrease the velocity and increase the temperature. Overall, the primary influence on free convection is sustained through the magnetic body force parameter, M, and also the surface mass flux (injection/suction) parameter, fw. The rheological effects, while still prominent, are not as dramatic. Boundary layers (both hydrodynamic and thermal) are, therefore, most strongly modified by the applied magnetic field and wall mass flux effect. The study is pertinent to smart coatings, e.g., durable paints, aerosol deposition processing and water-based solvent thermal treatment in chemical engineering

    Chemical reaction and Soret effects on hydromagnetic micropolar fluid along a stretching sheet

    Get PDF
    AbstractFree convection effects of a micropolar fluid along a stretching sheet embedded in a porous medium in the presence of a volumetric non-uniform heat source is investigated in the present paper. Thermal diffusion and first order chemical reaction are also considered in the present study to govern the flow characteristic. The generalization of the earlier studies centers round: (i) The magnetohydrodynamic flow is made to pass through a porous medium characterized by a non-Darcian drag coefficient affecting the momentum equation. (ii) The energy equation is modified with the interplay of non-uniform heat source. (iii) Consideration of chemically reactive species characterized by first order chemical reaction and thermal diffusion i.e. Soret modifying the equation of species concentration. Similarity transformation technique is used to transform the governing nonlinear partial differential equations into ordinary differential equations. The numerical solutions are achieved showing the effects of pertinent parameters. For verification of the present findings the results of this study have been compared with the earlier works in particular cases
    • …
    corecore