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Abstract. Peristaltic transport of two fluid model with micropolar fluid in the core region
and Newtonian fluid in the peripheral layer is studied under the assumptions of long
wavelength and low Reynolds number. The linearised equations governing the flow are
solved and closed form expressions for pressure rise, time averaged flux and frictional
force have been obtained. The effects of various parameterson these flow variables have
been studied. It is found that the pressure rise increases with micropolar parameter (m)
and central mean radius (η), but decreases with coupling number (N ) and viscosity ratio
(µ̄). The frictional force (̄F ) decreases with coupling number (N ) and viscosity ratio (̄µ)
but increases with micropolar parameter (m) and mean radius of central layer (η).

Keywords: peristaltic transport, peripheral layer, micropolar fluid, core region radius,
amplitude ratio, frictional force.

1 Introduction

Peristaltic transport is a form of fluid transport that occurs when progressive wave of area
contraction or expansion propagates along the length of a distensible tube containing the
liquid. It appears to be the major mechanism for urine transport in ureter, food mixing
and chyme movement in intestines, transport of spermatozoain cervical canal, transport
of bile in bile ducts and so on. Roller and finger pumps use peristalsis to pump corrosive
materials so as to prevent direct contact of the fluid with thepump’s internal surfaces.

The study of peristalsis has received considerable attention in last three decades
mainly because of its importance in biological systems and industrial applications. Seve-
ral investigators have analyzed the peristaltic motion of both Newtonian and non-Newto-
nian fluids in mechanical as well as physiological systems (Fung and Yih [1], Burns and
Parkes [2], Shapiro et al. [3], Selverov and Stone [4], Xiao and Damodaran [5], Misra and
Rao [6], Radhakrishnamacharya and Srinivasulu [7], Maruthi Prasad and Radhakrishna-
machrya [8], Muthu et al. [9]).
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The effect of peripheral layer on peristaltic flow has received some attention in the
recent past in the view of its relevance in physiological systems. Hence, Shukla et al. [10]
studied the effect of peripheral layer on peristaltic transport of a bio-fluid. Srivastava and
Srivastava [11] investigated the effect of peristalsis on aflow of a two-layered model with
Casson fluid in the core region and Newtonian fluid in the peripheral layer. Ramachandra
Rao and Usha [12] investigated the peristaltic transport oftwo immiscible fluids in a circu-
lar tube under the assumptions of long-wavelength and low Reynolds number. Misra and
Pandey [13] considered a two-dimensional channel flow of a power-law fluid surrounded
by a peripheral layer of power-law fluid having viscosity different from that of core fluid.

It is realized that the model of micropolar fluid introduced by Eringen [14] serves as
an appropriate model for blood (Ariman and Turk [15]). Thesefluids consist of rigid,
randomly oriented (or spherical) particles suspended in a viscous medium where the
deformation of particles is ignored. Basically, these fluids can support couple stresses and
body couples and exhibit micro rotational and micro inertial effects. It can be observed
that micropolar fluid model takes care of the rotation of fluidparticles by means of an
independent kinematic vector called micro rotation vector. Therefore, the model of a
micropolar fluid may be more appropriate for any bio-fluids. Hence, Muthu et al. [16]
and Srinivasacharya et al. [17] studied peristaltic transport of a micropolar fluid. The
steady stagnation flow towards a permeable vertical surfaceimmersed in micropolar fluid
is investigated by Anuar Ishak et al. [18]. The peristaltic motion of micropolar fluid
in a circular cylindrical tube with elastic wall propertieshas been studied by Muthu et
al. [19]. Hayat and Ali [20] investigated the effects of an endoscope on peristaltic flow of
micropolar fluid.

However, peristaltic motion of a two-layer model with micropolar fluid has not
received much attention. It is known that the viscosity of the fluid in the peripheral region
is different from that in the core region in many vessels in physiological systems like
vasomotion of some blood vessels, motion in ductus efferentes of the male reproductive
tract, transport of spermatozoa in the cervical canal, transportation of chyme in the oe-
sophagus (Misra and Pandey [13]). This study may help in understanding the interaction
of micropolar fluid and peripheral layer in peristaltic transport with particular reference
to the above mentioned systems.

Keeping the above in view, we considered the effect of peristalsis on flow of two-
layered model with microploar fluid in the core region and Newtonian fluid in the periph-
eral layer. Assuming that the wavelength of the peristalticwave is large in comparison
to the mean radius of the tube, the linearised equations of motion have been solved and
closed form expressions for pressure rise and time averagedflux have been obtained. The
effects of various parameters on these flow variables have been studied.

2 Mathematical formulation

Consider the peristaltic transport of a micropolar fluid surrounded coaxially by Newtonian
fluid in an axisymmetric tube of radiusa, with core radiusa1. Choosing the cylindrical
polar coordinate system(R, θ, Z) the wall deformation due to propagation of an infinite
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train of peristaltic waves is given by

R = H(Z, t) = a + b sin
2π

λ
(Z − ct), (1)

whereb is the amplitude,λ is the wave length and c is the speed of the wave.
Following Shukla et al. [10], the nature of the interface is same as that of wall

movement as shown in Fig. 1.

Fig. 1. Peristaltic transport in a tube.

Hence the geometry of the central layer is given by

H1(Z, t) = a1 + b1 sin
2π

λ
(Z − ct). (2)

Using the transformation

r = R, θ = θ, z = Z − ct, wz = Wz − c, wr = Wr

from a stationary to a moving frame of reference, the equations of motion in two regions
are given as follows:

(a) Peripheral region (H1(z) ≤ r ≤ H(z)):

∂p

∂z
= µp∇

2w1, (3)

∂p

∂r
= 0, (4)

where∇2 = ( ∂2

∂r2 + 1
r

∂
∂r

+ ∂2

∂z2 ), w1 is the component of velocity inz direction,p is the
pressure andµp is the viscosity of Newtonian fluid in peripheral region.

(b) Core region (0 ≤ r ≤ H1(z)).
The constitutive equations and equations of motion for micropolar fluid flow are given by
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(Srinivasacharya et al. [17])

∇ · w̄ = 0, (5)

ρ(w̄ · ∇w̄) = −∇p + k(∇× w̄) + (µc + k)∇2w̄, (6)

ρj(w̄ · ∇ḡ) = −2kḡ + k(∇× w̄) − γ(∇×∇× ḡ) + (α + β + γ)∇(∇ · ḡ), (7)

wherew̄ is the velocity vector,̄g is the microrotation vector,p is the fluid pressure,ρ and
j are the fluid density and microgyration parameters,µc is viscosity of micropolar fluid in
core region.k, α, β andγ are the material constants and satisfy the following inequalities
(Eringen [15]):

2µc + k ≥ 0, k ≥ 0, 3α + β + γ ≥, γ ≥ |β|.

Since the flow is axisymmetric, all the variables are independent ofθ as hence for this
flow, the velocity vector is given bȳw = (wr , 0, wz) and microrotation vector is̄g =
(0, vθ, 0).

Introducing the following non-dimensional quantities

h′ =
H

a
, h′

1 =
H1

a
, r′ =

r

a
, z′ =

z

λ
, w′

1 =
w1

c
, p′ =

a2p

λµcc
,

w′

r =
λwr

ca
, w′

z =
wz

c
, v′θ =

vθ

a2
, t′ =

ct

λ
, j′ =

j

a2

into equations (3) to (7) and dropping the primes, we get

∂p

∂z
=

1

r

∂

∂r

(

µ̄r
∂

∂r

)

w1, (8)

∂p

∂r
= 0, (9)

∂wr

∂r
+

wr

r
+

∂wz

∂z
= 0, (10)

Reδ
3

(

wr

∂wr

∂r
+ wz

∂wr

∂z

)

= −
∂p

∂r
+

δ2

1 − N

(

− N
∂vθ

∂z
+

∂2wr

∂r2
+

1

r

∂wr

∂r
−

wr

r2
+ δ2 ∂2wr

∂z2

)

, (11)

Reδ

(

wr

∂wz

∂r
+ wz

∂wz

∂z

)

= −
∂p

∂z
+

1

N − 1

(

N

r

∂

∂r
(rvθ) +

∂2wz

∂r2
+

1

r

∂wz

∂r
+ δ2 ∂2wz

∂z2

)

, (12)

jReδ(1 − N)

N

(

wr

∂vθ

∂r
+ wz

∂vθ

∂z

)

= −2vθ +

(

δ2 ∂wr

∂z
−

∂wz

∂r

)

+
2 − N

m2

[

∂p

∂r

(

1

r

∂

∂r
(rvθ)

)

+ δ2 ∂2vθ

∂z2

]

, (13)
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whereµ̄ =
µp

µc

is the viscosity ratio,δ = a
λ

, Re = ρac
µc

is the Reynolds number,N = k
µc+k

is the coupling number (0 ≤ N < 1) andm2 = a2k(2µc+k)
γ(µc+k) is the micropolar parameter.

Using long wavelength approximation (δ≪1) and neglecting inertial terms (Re =0),
equations (11) to (13) reduce to

∂p

∂r
= 0, (14)

N

r

∂

∂r
(rvθ) +

(

∂2wz

∂r2
+

1

r

∂wz

∂r

)

= (1 − N)
∂p

∂z
, (15)

2vθ +
∂wz

∂r
+

2 − N

m2

∂

∂r

(

1

r

∂

∂r
(rvθ)

)

= 0. (16)

The non-dimensional boundary conditions are

w1 = −1 at r = h(z) = 1 + ε sin[2πz], (17)

∂wz

∂r
= 0 at r = 0, (18)

wz is finite at r = 0, (19)

vθ = 0 at r = h1(z) = η + ε1 sin[2πz], (20)

w1 = wz at r = h1(z), (21)

µ̄
∂w1

∂r
=

∂wz

∂r
−

N

1 − N
vθ at r = h1(z), (22)

whereε (ε = b
a
) is the amplitude ratio,η = a1

a
andε1 = b1

a
.

3 Solution

Solving equation (8), subject to the boundary condition (17), we get

w1 =
1

4µ̄

(

r2 − h2
) dp

dz
+

c1

µ̄
log

(

r

h

)

− 1. (23)

Equation (15) can be written as

∂

∂r

(

r
∂wz

∂r
+ Nrvθ − (1 − N)

r2

2

dp

dz

)

= 0. (24)

Using equation (24) and (16), we get

∂2vθ

∂r2
+

1

r

∂vθ

∂r
−

(

m2 +
1

r2

)

vθ =
m2(1 − N)

2 − N

r

2

dp

dz
+

m2

2 − N

c2

r
. (25)

The general solution of equation (25) is

vθ = c3(z)I1(mr) + c4(z)K1(mr) −
1 − N

2 − N

r

2

dp

dz
+

c2

N − 2

1

r
, (26)

107



K. M. Prasad, G. Radhakrishnamacharya

whereI1(mr) andK1(mr) are modified Bessel functions of first order and second order
respectively.

Using equation (26) in (24) and solving forwz , we get

wz = c2 log r
2

2 − N
+

N

m
[−c3I0(mr) + c4K0(mr)] +

r2

4

dp

dz

2(1 − N)

2 − N
+ c5, (27)

whereI0 andK0 are modified Bessel functions of zeroth order.
Using the boundary conditions (18)–(22), the expressions for w1 andwz are given

by

w1 =
1

4µ̄

(

r2 − h2
) dp

dz
+

c1

µ̄
log

(

r

h

)

− 1, h1(z) ≤ r ≤ h(z), (28)

wz =
−N

m
c3I0(mr) +

(

1 − N

2 − N

)

dp

dz
+ c5, 0 ≤ r ≤ h1(z), (29)

wherec1 = −Nh1(z)I1(mh1)
2−N
1−N

c3,

c3 =
1−N
2−N

h1

2
dp
dz

I1(mh1)
,

c5 =

[

h2
1−h2

4µ̄
−

(

1−N

2−N

)

h2
1

2
−N

h2
1

2µ̄
log

(

h1

h

)

+
N

m

(

1−N

2−N

)

h1

2

I0(mh1)

I1(mh1)

]

dp

dz
−1.

The dimensionless fluxq (q = q′

πa2c
) in the moving frame is given by

q =

h1
∫

0

2rwz dr +

h
∫

h1

2rw1 dr. (30)

Substituting forw1 andwz from equation (28) and (28) in (30) and finally we get

q = 2c3

(

−N

m2

)

I1(mh1)h1 +
1 − N

2 − N

h4
1

4

dp

dz
−

(h2 − h2
1)

2

8µ̄

dp

dz
+ h2

1c5

+
2c1

µ̄

[

h2
1

4
−

h2

4
−

h2
1

2
log

(

h1

h

)]

−
(

h2 − h2
1

)

.

(31)

From equation (31), we get

dp

dz
=

q + h2

S
, (32)

where

S = −
(h2−h2

1)
2

8µ̄
+

(

1−N

2−N

)

h4
1

4
+

(h2
1−h2)h2

1

4µ̄
−

(

1−N

2−N

)

h4
1

2
−

N

2µ̄
h2

1 log

(

h1

h

)

+
N

m

(

1−N

2−N

)

h3
1

2

I0(mh1)

I1(mh1)
−

Nh2
1

m2

(

1−N

2−N

)

−
Nh2

1

µ̄

[

h2−h2
1

4
−

h2
1

2l
log

(

h1

h

)]

.
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The pressure drop over a wavelength∆pλ is defined by

∆pλ = −

1
∫

0

(

dp

dz

)

dz. (33)

Substituting the expressiondp
dz

in equation (33), we get

−∆pλ = qL1 + L2, (34)

whereL1 =
∫ 1

0
dz
S

, L2 =
∫ 1

0
h2

S
dz.

Following the analysis of Shapiro et al. [3], the time averaged flux over a period in
the laboratory frame,̄Q, is given by

Q̄ = 1 +
ε2

2
+ q. (35)

Substituting equation (34) in (35), we get

Q̄ = 1 +
ε2

2
−

(

∆pλ

L1
+

L2

L1

)

. (36)

The dimensionless frictional forceF (F = F ′

πλcµ
) at the wall is given by

F =

1
∫

0

h2

(

−
dp

dz

)

dz. (37)

4 Results

The effects of various parameters on pressure rise (−∆pλ), pressure rise at zero time
averaged flux (∆pλ0), time averaged flux at zero pressure rise (Q̄0) and frictional force
(F̄ ) have been computed using numerical integration by using mathematica 5.1 software
and the results are graphically presented in Figs. 2–17.

It can be seen from Figs. 2–5 that the pressure rise (−∆pλ) increases with the
increase of the time averaged flux (Q̄) for the fixed values of viscosity ratio (µ̄), mean
radius of central radius (η), micropolar parameter (m) and amplitude ratio (ε). Further,
it can be seen from Fig. 2 that the pressure rise (−∆pλ) decreases with coupling number
(N ). It can be seen that the pressure rise decreases as viscosity ratio (µ̄) increases (Fig. 3).
Also, Figs. 4 and 5 show that the pressure rise increases as the micropolar effect (m)
increases and with mean radius of the central layer (η).

The pressure rise at zero time averaged flux (∆pλ0), an important flow variable, is
calculated from the expression equation (33) by takingQ̄0 = 0 and the results are plotted
in Figs. 6–9. It can be seen from Figs. 6 and 7 that (∆pλ0) decreases with the coupling
number (N ) and viscosity ratio (̄µ) but this decreases is significant only for values of
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Fig. 2. Effect ofQ̄ andN on (−∆pλ)
(µ̄ = 0.5, η = 0.5, ε = 0.4, m = 2).

Fig. 3. Effect ofQ̄ and µ̄ on (−∆pλ)
(η = 0.5, ε = 0.4, N = 0.8, m = 2).

Fig. 4. Effect ofQ̄ andm on (−∆pλ)
(η = 0.5, ε = 0.4, N = 0.8, µ̄ = 0.5).

Fig. 5. Effect ofQ̄ and η on (−∆pλ)
(m = 2, ε = 0.4, N = 0.8, µ̄ = 0.5).

Fig. 6. Effect of ε and N on (∆pλ0)
(m = 2, η = 0.8, µ̄ = 0.5).

Fig. 7. Effect of ε and µ̄ on (∆pλ0)
(m = 2, η = 0.8, N = 0.8).

Fig. 8. Effect of ε and m on (∆pλ0)
(η = 0.8, N = 0.8, µ̄ = 0.5).

Fig. 9. Effect of ε and η on (∆pλ0)
(m = 2, N = 0.8, µ̄ = 0.5).
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Fig. 10. Effect of ε and N on (Q̄0)
(m = 0.001, η = 0.8, µ̄ = 0.5).

Fig. 11. Effect of ε and µ̄ on (Q̄0)
(m = 0.001, N = 0.8, η = 0.4).

Fig. 12. Effect of ε and m on (Q̄0)
(N = 0.6, η = 0.4, µ̄ = 0.5).

Fig. 13. Effect of ε and η on (Q̄0)
(m = 2, N = 0.8, µ̄ = 0.5).

Fig. 14. Effect ofε andN onF̄ (m = 10,
η = 0.4, µ̄ = 0.5, ∆pλ = 0.2).

Fig. 15. Effect ofε andµ̄ on F̄ (m = 10,
N = 0.8, η = 0.4, ∆pλ = 0.2).

Fig. 16. Effect ofε andm onF̄ (µ̄ = 0.5,
N = 0.8, η = 0.4, ∆pλ = 0.2).

Fig. 17. Effect ofε andη on F̄ (µ̄ = 0.5,
m = 10, N = 0.8, ∆pλ = 0.2).
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amplitude ratio (ε) beyond0.3. However, (∆pλ0) increases with micropolar parameter
(m) and mean radius of the central layer (η) (Figs. 8 and 9).

The effects of various parameters on time averaged flux at zero pressure rise (̄Q0),
i.e., the time averaged flux̄Q calculated for∆pλ = 0, are shown in Figs. 10–13. It is
observed that for fixed values other parameters, the time averaged flux at zero pressure
rise increases with coupling number (N ), viscosity ratio (̄µ) and mean radius of central
layer (η), but this increase is insignificant for lower values of amplitude ratio (ε ≤ 0.2).
Further,Q̄0 decreases with micropolar parameter (m).

The variation of frictional forcēF with various parameters is shown in Figs. 14 to
17. The frictional force decreases with the coupling number(N ) and viscosity ratio (̄µ)
(Figs. 14 and 15). However, Figs. 16 and 17 show that the frictional force increases with
micropolar parameter (m) and mean radius of central layer (η).

The expressions for the flow variables reduce to those of Shapiro et al. [3] if we take
the micropolar parameters to be zero and the peripheral layer to be absent.

5 Conclusion

Peristaltic flow of two-layered model with microploar fluid in the core region and Newto-
nian fluid in the peripheral layer has been investigated under the long wavelength approx-
imation. It is found that the pressure rise decreases with coupling number and viscosity
ratio but increases with other micropolar parameter and mean radius of central layer. Also
the frictional force decreases with coupling number and viscosity ratio but increases with
mean radius of central layer and other micropolar parameter.

References

1. Y. C. Fung, C. S. Yih, Peristaltic transport,Trans. ASME J. Appl. Mech., 35, pp. 669–675, 1968.

2. J. C. Burns, T. Parkes, Peristaltic motion,J. Fluid Mech., 29, pp. 731–743, 1969.

3. A. H. Shapiro, M. Y. Jaffrin, S. L. Weinberg, Peristaltic pumping with long wavelengths at low
Reynolds numbers,J. Fluid Mech., 37, pp. 799–825, 1969.

4. K. P. Selverov, H. A. Stone, Peristaltically driven channel flows with applications toward
micromixing,Phys. Fluids, 13, pp. 1837–1859, 2001.

5. Q. Xiao, M. Damodaran, A numerical investigtion of peristaltic waves in circular tubes,Int. J.
Comput. Fluid Dyn., 16, pp. 201–216, 2002.

6. M. Misra, A. R. Rao, Peristaltic transport of a Newtonian fluid in an asymmetric channel,
Z. Angew. Math. Phys., 54, pp. 532–550, 2003.

7. G. Radhakrishnamacharya, Ch. Srinivasulu, Influence of wall properties on peristaltic transport
with heat transfer,C. R. Mechanique, 335, pp. 369–373, 2007.

8. K. Maruthi Prasad, G. Radhakrishnamachrya, Peristaltictransport of a Herschel-Bulkley fluid
in a channel in the presence of magnetic field of low intensity, Int. J. of Computational
Intelligence and Applications, 1, pp. 71–81, 2007.

112



Effect of Peripheral Layer on Peristaltic Transport of a Micropolar Fluid

9. P. Muthu, B. V. Rathish Kumar, Peeyush Chandra, Peristaltic motion of micropolar fluid in
circular cylindrical tubes: Effect of wall properties,Appl. Math. Model., accepted, 2007.

10. J. B. Shukla, R. S. Parihar, B. R. P. Rao, S. P. Gupta, Effects of peripheral layer on peristaltic
transport of a bio-fluid,J. Fluid Mech., 97, pp. 225–237, 1980.

11. L. M. Srivastava, V. P. Srivastava, Peristaltic transport of blood: Casson Model II,J. Biomech.,
17, pp. 821–829, 1984.

12. A. Ramachandra Rao, S. Usha, Peristaltic transport of two immiscible viscous fluids in a
circular tube,J. Fluid Mech., 298, pp. 271–28, 1995.

13. J. C. Misra, S. K. Pandey, Peristaltic transport of a non-Newtonian fluid with a peripheral layer,
Int. J. Eng. Sci., 37, pp. 1841–1858, 1999.

14. A. C. Eringen, Theory of micropolar fluids,J. Math. Mech., 16, pp. 1–18, 1966.

15. T. Ariman, M. A. Turk, N. D. Sylvester, Applications of microcontinuum fluid mechanics,Int.
J. Eng. Sci., 12, pp. 273–293, 1974.

16. P. Muthu, B. V. Rathish Kumar, Peeyush Chandra, On the influence of wall properties in the
peristaltic motion of miccropolar fluid,ANZIAM J., 45, pp. 245–260, 2003.

17. D. Srinivasacharya, M. Mishra, A. R. Rao, Peristaltic pumping of a micropolar fluid in a tube,
Acta Mech., 161, pp. 165–178, 2003.

18. A. Ishak, R. Nazar, I. Pop, Stagnation flow of a micropolarfluid towards a vertical permeable
surface,Int. Commun. Heat Mass, 35, pp. 276–281, 2008.

19. P. Muthu, B. V. Rathish Kumar, P. Chandra, Peristaltic motion of micropolar fluid in circular
cylindrical tubes: Effect of wall properties,Appl. Math. Model., 32(10), pp. 2019–2033, 2008.

20. H. Tasawar, A. Nasir, Effects of an endoscope on peristaltic flow of a micropolar fluid,Math.
Comput. Model., in press, 2007.

113


