23,315 research outputs found
Circadian rhythms and hormonal homeostasis: Pathophysiological implications
Over recent years, a deeper comprehension of the molecular mechanisms that control biological clocks and circadian rhythms has been achieved. In fact, many studies have contributed to unravelling the importance of the molecular clock for the regulation of our physiology, including hormonal and metabolic homeostasis. Here we will review the structure, organisation and molecular machinery that make our circadian clock work, and its relevance for the proper functioning of physiological processes. We will also describe the interconnections between circadian rhythms and endocrine homeostasis, as well as the underlying consequences that circadian dysregulations might have in the development of several pathologic affections. Finally, we will discuss how a better knowledge of such relationships might prove helpful in designing new therapeutic approaches for endocrine and metabolic diseases
Position location system and method Patent
Position locating system for remote aircraft using voice communication and digital signal
Melatonin receptor expression in the zebra finch brain and peripheral tissues
The circadian endocrine hormone melatonin plays a significant role in many physiological processes such as modulating sleep/wake cycle and oxidative stress. Melatonin is synthesised and secreted during the night by the pineal gland and released into the circulatory system. It binds to numerous membrane, cytosolic and nuclear receptors in the brain and peripheral organs. Three G-protein linked membrane receptors (Mel-1A, Mel-1B and Mel-1C) have been identified in numerous species. Considering the importance of this hormone and its receptors, this study looks at the location and rhythmicity of three avian melatonin receptors Mel-1A, Mel-1B and Mel-1C using reserve transcription-polymerase chain reaction (RT-PCR) mRNA analysis techniques. This study shows successful partial cloning of the three receptors and gene expression analysis revealed significant rhythms of the Mel-1A receptor in the cerebellum, diencephalon, tectum opticum, telencephalon, and retina. Significant rhythms where found in the diencephalon, pineal gland, retina, tectum opticum and cerebellum of the Mel-1B receptor whereas Mel-1C appeared not to be rhythmically expressed in brain tissues studied. Mel-1A, Mel-1B and Mel-1C receptor mRNA where also present in peripheral tissues showing tissue-specific expression patterns
EVOLUTION OF THE CIRCADIAN CLOCK IN EXTREME ENVIRONMENT: LESSONS FROM CAVEFISH.
Evolution has been strongly influenced by the daily cycles of temperature and light imposed by the rotation of the Earth. Fascinating demonstrations of this are seen in extreme environments such as caves where some animals have remained completely isolated from the day-night cycle for millions of years. Most of these species show convergent evolution, sharing a range of striking physical properties such as eye loss. One fundamental issue is whether “hypogean” species retain a functional circadian clock. This highly conserved, physiological timing mechanism allows organisms to anticipate daily environmental changes and is synchronized primarily by light. The Somalian cavefish, Phreatichthys andruzzii does possess a circadian clock that is entrained by a daily regular feeding time but strikingly, not by light. Under constant conditions the P. andruzzii clock oscillates with an extremely long period and also lacks normal temperature compensation. We document multiple mutations affecting a light-induced clock gene, Period2 as well as the genes encoding the extra-retinal photoreceptors Melanopsin (Opn4m2) and TMT-opsin. Remarkably, we show that ectopic expression of zebrafish homologs of these opsins rescues light induced clock gene expression in P. andruzzii cells. Thus, by studying this natural mutant we provide direct evidence for a peripheral light-sensing function of extra-retinal opsins in vertebrates. Furthermore, the properties of this cavefish illustrate that evolution in constant darkness leads not only to anatomical changes but also to loss of gene function linked with the detection and anticipation of the day-night cycle
Coherent States of the q--Canonical Commutation Relations
For the -deformed canonical commutation relations for in some Hilbert
space we consider representations generated from a vector
satisfying , where .
We show that such a representation exists if and only if .
Moreover, for these representations are unitarily equivalent
to the Fock representation (obtained for ). On the other hand
representations obtained for different unit vectors are disjoint. We
show that the universal C*-algebra for the relations has a largest proper,
closed, two-sided ideal. The quotient by this ideal is a natural -analogue
of the Cuntz algebra (obtained for ). We discuss the Conjecture that, for
, this analogue should, in fact, be equal to the Cuntz algebra
itself. In the limiting cases we determine all irreducible
representations of the relations, and characterize those which can be obtained
via coherent states.Comment: 19 pages, Plain Te
The neurobiology of circadian rhythms
Purpose of review
There is growing awareness of the importance of circadian rhythmicity in various research fields. Exciting developments are ongoing in the field of circadian neurobiology linked to sleep, food intake, and memory. With the current knowledge of critical ‘clock genes’ (genes found to be involved in the generation of circadian rhythms) and novel techniques for imaging cyclic events in brain and peripheral tissue, this field of research is rapidly expanding. We reviewed only some of the highlights of the past year, and placed these findings into a mutual circadian perspective.
Recent findings
Recent findings on the organization of the circadian clock systems are addressed, ranging from the retina to the suprachiasmatic nucleus and peripheral organs. Novel developments in sleep, food intake, and memory research linked to circadian aspects are discussed.
Summary
The neurobiology of circadian rhythms is pivotal to the orchestration of the temporal organization of an individual’s physiology and behavior. Endogenous circadian timing systems underlie coupling and uncoupling mechanisms of many neuronal and physiological processes, the latter possibly inducing health risks to the organism. The integration of sleep, food intake and memory in a circadian setting has clear potential as a systems neurobiology line of research.
- …
