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Purpose of review

There is growing awareness of the importance of circadian rhythmicity in various

research fields. Exciting developments are ongoing in the field of circadian neurobiology

linked to sleep, food intake, and memory. With the current knowledge of critical

‘clock genes’ (genes found to be involved in the generation of circadian rhythms) and

novel techniques for imaging cyclic events in brain and peripheral tissue, this field

of research is rapidly expanding. We reviewed only some of the highlights of the past

year, and placed these findings into a mutual circadian perspective.

Recent findings

Recent findings on the organization of the circadian clock systems are addressed,

ranging from the retina to the suprachiasmatic nucleus and peripheral organs. Novel

developments in sleep, food intake, and memory research linked to circadian aspects

are discussed.

Summary

The neurobiology of circadian rhythms is pivotal to the orchestration of the temporal

organization of an individual’s physiology and behavior. Endogenous circadian timing

systems underlie coupling and uncoupling mechanisms of many neuronal and

physiological processes, the latter possibly inducing health risks to the organism. The

integration of sleep, food intake and memory in a circadian setting has clear potential as

a systems neurobiology line of research.
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Introduction
Circadian rhythms allow the organism to anticipate and

respond to environmental changes and adjust accord-

ingly. Circadian timekeeping systems in mammals are

known to be organized in a hierarchical multioscillator

network with the suprachiasmatic nucleus (SCN) acting

as the central pacemaker (Fig. 1). This brain region,

located in the ventral part of the hypothalamus, drives

daily (circadian) rhythms. In several neurobiological

aspects the SCN is a remarkable brain region, with an

unusual high level of intercellular communication. It can

be viewed as a programmable and flexible internal time-

keeping system. Data on the expression of proteins novel

to the SCN appear regularly. For example, the SCN was

shown to be one of the few adult brain regions with dense

doublecortin (DCX) expression [1]. DCX plays a role in

neuronal and synaptic plasticity, and DCX may mediate

rhythmic changes in SCN synaptic organization that

underlie day/night changes in electrical signaling. Such

reports make clear that the neurochemistry of the master

clock has not been fully mapped yet.

Nowadays, it has been shown that circadian oscillators

exist in most regions of the brain, the retina, and many
opyright © Lippincott Williams & Wilkins. Unautho

1070-5287 � 2009 Wolters Kluwer Health | Lippincott Williams & Wilkins
peripheral tissues such as the liver [2] (Fig. 1). It also

became apparent that most body tissues contain circadian

oscillation mechanisms that may uncouple from the

SCN’s influence only under specific conditions. The food

entrainable oscillator (FEO), which becomes apparent

under restricted feeding conditions, is illustrative for an

uncoupling process from the SCN. Restricted feeding

conditions affect clock gene expression in many regions

of the hypothalamus [3], but not all known clock genes

seem to be involved [4]. Although the opposite has been

suggested [5], it is now clear that the FEO does not

depend on the canonical circadian molecular network

and that it cannot be localized to the dorsomedial hypo-

thalamus (DMH) [6�]. Possibly, the FEO does not

reside in a single brain region but in a neuronal network.

This network could be the septo-hippocampal-thalamo-

hypothalamic circuit, which was found to be activated 3 h

before food anticipation [7�]. Nevertheless, the quest for

finding the site and mechanism of the FEO remains

open.
Circadian rhythms and the retina
Zeitgebers (external stimuli phase shifting and entraining

the intrinsic circadian rhythm) synchronize the circadian
rized reproduction of this article is prohibited.
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Figure 1 Circadian timekeeping systems

The suprachiasmatic nucleus (SCN) receives retinal light input, and
endows its rhythm on various peripheral organs. The pineal gland fully
depends on SCN input for circadian rhythmicity, whereas the liver can
uncouple in part from the master clock under restricted feeding con-
ditions. Within the SCN, individual cells or cell clusters can be out of
phase with each other. Occasionally, nonrhythmic cells can be found as
well.

Figure 2 Suprachiasmatic nucleus connections within the brain

CeA, central amygdala; DM, dorsomedial hypothalamus; IML, interme-
diolateral column of the spinal cord; MPA, medial preoptic area; MPON,
median preoptic nucleus; NAc, nucleus accumbens; PFC, prefrontal
cortex; PVN, paraventricular nucleus; PVT, thalamic paraventricular
nucleus; SCG, superior cervical ganglion; SCN, suprachiasmatic
nucleus; VLPO, ventrolateral preoptic area; VTA, ventral tegmental area.
Global scheme of SCN output pathways. Black arrows indicate direct
projections. Grey arrows represent functional connections.
rhythms to the environment, with light being critical for

the SCN and food timing for the FEO. Within the SCN,

neurons generate oscillations of a period of approximately

24 h that are synchronized (entrained) to the external

light/dark cycle via light input from the retina. The

observation of light entrained retinally-degenerated mice

led to the discovery of the novel photopigment mela-

nopsin [8,9], which was shown to be the prime photo-

pigment driving circadian light entrainment and other

nonimage forming light responses. Melanopsin is found

in intrinsically photosensitive retinal ganglion cells and

in a novel human cone type [10]. The bi-stability of

melanopsin (similar to insect opsins) [11,12,13�] opens

the possibility of photosensitization as a tool to enhance

circadian entrainment.

The circadian oscillator in the retina has not yet been

located to a specific cell type, but it is essential for

rhythms in retinal sensitivity [14�,15]. This observation

may in part explain the mechanism by which the circa-

dian system modulates its own photic input [16,17].
opyright © Lippincott Williams & Wilkins. Unauth
Circadian clocks and output pathways
Essential in the neurobiology of circadian rhythms is the

wiring of the SCN. Gradually it is better known how the

SCN communicates to other brain regions to impart or

entrain circadian rhythmicity in behavioral and physio-

logical processes (Fig. 2; [18] and references therein).

The SCN transmits light information to peripheral organs

such as the liver via autonomic innervation [19], which

can lead to changes in liver clock gene expression unre-

lated to the expression of liver output genes [20]. The

functional relevance of such communication between the

SCN and peripheral organs is as yet unknown.

Recently, an interesting novel SCN output pathway to

the ventral tegmental area (VTA) via the median preoptic

nucleus (MPON) has been described [21�]. This projec-

tion may function as the circadian regulator of behavioral

processes such as arousal and motivation, further bridging

well known behavioral observations on reward-related

actions and circadian rhythmicity.

Peripheral tissues exhibit their own distinct pattern of

phase distribution of clock and clock-controlled genes

(e.g. [22]). Why are peripheral clocks needed in the

presence of a central brain clock? One explanation is

that these organs require independence from the SCN-

derived rhythm to function optimally. An example is the
orized reproduction of this article is prohibited.
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finding of the liver clock, driving a daily rhythm of

hepatic glucose export that counterbalances daily food

intake during sleep [7�]. Another example is the hippo-

campus, pivotal in neuronal plasticity, learning, and

memory processes, which shows rhythmic gene expres-

sion relatively independent of the SCN (Fig. 2). This

allows for the initiation of intrinsic rhythms necessary for

time-of-day dependent memory formation, which can

and probably needs to be desynchronized from the

SCN rhythm.
Circadian rhythms and sleep
Perhaps one of the most conspicuous features of the

circadian system is sleep–wake cycle regulation. Although

the fundamental function of sleep is one of the most

important open questions in neurobiology [23], several

recent insights shed light on its regulatory pathways. The

SCN is essential in sleep timing and the dorsomedial

aspect of the SCN seems specific for the regulation of

rapid eye movement sleep [24]. A direct influence of light

on sleep architecture is mediated by melanopsin contain-

ing retinal ganglion cells. Melanopsin knock-out mice

(OPN4�/�) show disrupted sleep architecture [25–27]

which might be explained by direct projections of mela-

nopsin containing ganglion cells to the ventrolateral pre-

optic nucleus (VLPO) [28], a hypothalamic area involved

in sleep–wake regulation via GABA-ergic projections to

lateral hypothalamic orexin (hypocretin) neurons [29,30].

Surprisingly, sleep architecture is also affected by genetic

make-up [31–33], and circadian clock genes were found to

regulate both circadian and homeostatic components of

sleep regulation [34,35]. Insights in molecular sleep regu-

lation and circadian interactions arise from Drosophila
studies [36–38]. Translation of these findings to mamma-

lian sleep regulation might be a hazardous operation, partly

because different definitions of sleep are used in both

fields.
Circadian rhythms, energy metabolism and
food intake
The exact role of the clock genes in food intake regula-

tion is currently being elucidated. Per2�/� mice were

found to lack the typical light/dark food intake pattern.

Additionally, these Per2�/� mice do not develop food

anticipatory behavior, whereas Per1�/� and wild type

mice do [39]. Furthermore, Per2�/� mice lack the

a-melanin stimulating hormone (a-MSH) pulse (a neuro-

peptide inhibiting food intake during the light phase),

typically seen before the light phase fasting period [40].

Roles for circadian clocks in energy balance and in the

pathological consequences of its disturbance have been

suggested. Several studies show that sleep loss leads to

increased metabolic syndrome risk (reviewed in [41]).
opyright © Lippincott Williams & Wilkins. Unautho
Additionally, misalignment of circadian and behavioral

cycles, as is seen in shift work, induces a risk for

diabetes and cardiovascular disease [42�], and neuronal

PAS domain protein 2 and Per2 clock gene mutations

were also linked to metabolic syndrome [43]. Evidently,

the circadian clock influences an individual’s meta-

bolic well being; however, the reverse also seems true.

Deregulation of energy balance, as in metabolic syn-

drome, altered the expression of several clock genes

in brainstem and liver [44,45�]. It remains debatable

whether circadian misalignment is cause or consequence

of metabolic diseases.

Apart from the mentioned interactions between food

intake and circadian rhythmicity, a common link between

circadian oscillators and food anticipation may be found

in the brain reward pathway. Circadian mechanisms are

important for the development and expression of reward-

related behavior. Withdrawal from chronic treatment

results in desynchronization from the SCN rhythm in

reward-related brain regions [46]. The suggested link

between feeding and reward evokes contradicting views

on whether hyper-responsiveness or hypo-responsiveness

of the reward system leads to overeating (reviewed in

[47]). This contradiction might be explained by a differ-

ential effect on anticipatory, circadian regulated food

intake, and consummatory feeding behavior [48�]. The

notion of a robust influence of circadian oscillators on

food intake anticipation in combination with the corre-

lation between food anticipatory activity and the reward

system suggests an interaction between circadian rhyth-

micity, reward, and energy metabolism (Fig. 3). This

interaction may be mediated by orexin, an orexigenic

neuropeptide that stimulates food intake and wake-

fulness. In Orexin�/� mice cataplexy was powerfully

triggered by anticipation of highly rewarding meals,

whereas cataplexy was rarely triggered by standard meals,

suggesting a role of the reward system in the feeding–

wakefulness interaction [49�].
Circadian rhythms, learning and memory
The gap in our understanding of how the biological clock

and circadian rhythms affect memory processes is being

bridged. In general, the sleep–wake cycle supports acqui-

sition (learning) during wakefulness, and promotes mem-

ory consolidation during sleep. In Drosophila, new findings

demonstrate that synaptic proteins increase during wake-

fulness and decline during sleep [50�], which coincides

with increasing and decreasing synapse numbers [51�].

These studies support the synaptic downscaling hypoth-

esis as a function of sleep. Disruption of sleep–wake

patterns and circadian organization of behavior are decre-

mental to memory. For example, in arrhythmic Siberian

hamsters, delayed novel-object learning was impaired

[52]. This suggests that hippocampal-dependent learning
rized reproduction of this article is prohibited.
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Figure 3 Circadian control of activity, energy homeostasis and

memory

The reciprocal crosstalk between the circadian timing system, sleep–
wake regulation and metabolic regulation is crucial for an organism’s well
being. It should be noted that memory, gluing past, present, and future,
on which many decisions and actions of an organism in maintaining
energy homeostasis are based, is directly linked to this crosstalk. Sleep
notably promotes declarative memory processing, and reward elements
of food intake are often memorized via procedural memory systems.
requires a functional circadian system. SCN lesions in

Golden hamsters did not prevent circadian modulation

of conditioned place preference, indicative for extra-

SCN rhythms underlying this modulation [53�]. These

rhythms may be induced by the above-mentioned septo-

hippocampal-thalamo-hypothalamic circuit underlying

motivated behavior.

In an attempt to further decipher the role of clock genes in

learning and memory, Jilg et al. [54��] studied Per1�/�mice

for hippocampus-dependent learning. These Per1�/�mice

failed to master this task. In contrast, Cry1�/�Cry2�/�

mice successfully learned a spatial task [55�]. These

Cry1�/�Cry2�/� mice, however, failed to associate time

and place, an association most likely made by the hippo-

campus possibly under initial support of the SCN. This

indicates clock-gene specific actions underlying certain

learning and memory functions, which might relate to

specific learning and memory problems in humans.

Most brain regions critically involved in learning and

memory are relatively indirectly connected to the SCN

(Fig. 1), for example via the SCN-mediated melatonin

rhythm. Adult hippocampal neurogenesis (involved in

hippocampal memory processes [56,57]) is positively

influenced by melatonin promoted cell survival [58].

Another link between melatonin and memory was shown
opyright © Lippincott Williams & Wilkins. Unauth
in the diurnal zebrafish, in which melatonin suppressed

nighttime memory formation [59]. Other learning and

memory-related areas such as the prefrontal cortex

and central amygdala (CeA) receive SCN input via the

thalamic paraventricular nucleus (PVT). Rhythmic

expression of Per2 in the CeA is normally synchronized

to rhythms of the SCN. However, perturbations of moti-

vational state, energy balance, or stressors affect the CeA

rhythm rather than the SCN rhythm [60�]. As a con-

sequence, both intrinsic rhythms become uncoupled. In

line with these findings, Neto et al. [61�] showed that

disruption of circadian rhythms selectively impairs

emotional components of memory related to fear and

risk evaluation, linking once more circadian rhythm

disturbances to mood disorders.

Finally, it should be noted that circadian contributions to

learning and memory performance are often underesti-

mated. For one, acquiring new information (training) may

act as a Zeitgeber and time stamp, either at the level of

the hippocampus, the SCN, or both in mutual interaction

[62,63��]. Hence, daily training sessions at random times

of day may cause suboptimal memory performance.
Conclusion
The neurobiology of circadian rhythms provides the

temporal organization of all basic aspects of an individual.

Deregulation of circadian systems is linked to a broad

variety of neurological disorders and other human con-

ditions including obesity, anorexia nervosa, cardiovas-

cular and mood disorders, and disturbances in memory

and sleep. Further study on the neurobiology of circadian

rhythms is needed to allow integration of different

neurobiological disciplines and the establishment of

circadian systems neurobiology (Fig. 3). One example

of the advantage of this knowledge is the development of

a ‘molecular-timetable method’ via blood analysis. This

will lead to chronotherapy and personalized medication

[64�], even more so when pushed forward to an organ-

specific read out.
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