12 research outputs found

    Modulated phases of a 1D sharp interface model in a magnetic field

    Full text link
    We investigate the ground states of 1D continuum models having short-range ferromagnetic type interactions and a wide class of competing longer-range antiferromagnetic type interactions. The model is defined in terms of an energy functional, which can be thought of as the Hamiltonian of a coarse-grained microscopic system or as a mesoscopic free energy functional describing various materials. We prove that the ground state is simple periodic whatever the prescribed total magnetization might be. Previous studies of this model of frustrated systems assumed this simple periodicity but, as in many examples in condensed matter physics, it is neither obvious nor always true that ground states do not have a more complicated, or even chaotic structure.Comment: 12 pages, 3 figure

    Periodic energy minimizers for a one-dimensional liquid drop model

    Get PDF
    We reprove a result by Ren and Wei concerning the periodicity of minimizers of a one-dimensional liquid drop model in the neutral case. Our proof works for general boundary conditions and also in the non-neutral case

    Periodic energy minimizers for a one-dimensional liquid drop model

    Get PDF
    We reprove a result by Ren and Wei concerning the periodicity of minimizers of a one-dimensional liquid drop model in the neutral case. Our proof works for general boundary conditions and also in the non-neutral case

    Striped periodic minimizers of a two-dimensional model for martensitic phase transitions

    Full text link
    In this paper we consider a simplified two-dimensional scalar model for the formation of mesoscopic domain patterns in martensitic shape-memory alloys at the interface between a region occupied by the parent (austenite) phase and a region occupied by the product (martensite) phase, which can occur in two variants (twins). The model, first proposed by Kohn and Mueller, is defined by the following functional: E(u)=βu(0,)H1/2([0,h])2+0Ldx0hdy(ux2+ϵuyy){\cal E}(u)=\beta||u(0,\cdot)||^2_{H^{1/2}([0,h])}+ \int_{0}^{L} dx \int_0^h dy \big(|u_x|^2 + \epsilon |u_{yy}| \big) where u:[0,L]×[0,h]Ru:[0,L]\times[0,h]\to R is periodic in yy and uy=±1u_y=\pm 1 almost everywhere. Conti proved that if βϵL/h2\beta\gtrsim\epsilon L/h^2 then the minimal specific energy scales like min{(ϵβ/L)1/2,(ϵ/L)2/3}\sim \min\{(\epsilon\beta/L)^{1/2}, (\epsilon/L)^{2/3}\}, as (ϵ/L)0(\epsilon/L)\to 0. In the regime (ϵβ/L)1/2(ϵ/L)2/3(\epsilon\beta/L)^{1/2}\ll (\epsilon/L)^{2/3}, we improve Conti's results, by computing exactly the minimal energy and by proving that minimizers are periodic one-dimensional sawtooth functions.Comment: 29 pages, 3 figure

    Froth-like minimizers of a non local free energy functional with competing interactions

    Full text link
    We investigate the ground and low energy states of a one dimensional non local free energy functional describing at a mean field level a spin system with both ferromagnetic and antiferromagnetic interactions. In particular, the antiferromagnetic interaction is assumed to have a range much larger than the ferromagnetic one. The competition between these two effects is expected to lead to the spontaneous emergence of a regular alternation of long intervals on which the spin profile is magnetized either up or down, with an oscillation scale intermediate between the range of the ferromagnetic and that of the antiferromagnetic interaction. In this sense, the optimal or quasi-optimal profiles are "froth-like": if seen on the scale of the antiferromagnetic potential they look neutral, but if seen at the microscope they actually consist of big bubbles of two different phases alternating among each other. In this paper we prove the validity of this picture, we compute the oscillation scale of the quasi-optimal profiles and we quantify their distance in norm from a reference periodic profile. The proof consists of two main steps: we first coarse grain the system on a scale intermediate between the range of the ferromagnetic potential and the expected optimal oscillation scale; in this way we reduce the original functional to an effective "sharp interface" one. Next, we study the latter by reflection positivity methods, which require as a key ingredient the exact locality of the short range term. Our proof has the conceptual interest of combining coarse graining with reflection positivity methods, an idea that is presumably useful in much more general contexts than the one studied here.Comment: 38 pages, 2 figure
    corecore