22 research outputs found

    Periodic Properties of User Mobility and Access-Point Popularity

    Get PDF
    Understanding user mobility and its effect on access points (APs) is important in designing location-aware systems and wireless networks. Although various studies of wireless networks have provided useful insights, it is hard to apply them to other situations. Here we present a general methodology for extracting mobility information from wireless network traces, and for classifying mobile users and APs. We used the Fourier transform to reveal important periods and chose the two strongest periods to serve as parameters to a classification system based on Bayes\u27 theory. Analysis of 1-month traces shows that while a daily pattern is common among both users and APs, a weekly pattern is common only for APs. Analysis of 1-year traces revealed that both user mobility and AP popularity depend on the academic calendar. By plotting the classes of APs on our campus map, we discovered that their periodic behavior depends on their proximity to other APs

    Identifying Unusual Days

    Get PDF
    Pervasive applications such as digital memories or patient monitors collect a vast amount of data. One key challenge in these systems is how to extract interesting or unusual information. Because users cannot anticipate their future interests in the data when the data is stored, it is hard to provide appropriate indexes. As location-tracking technologies, such as global positioning system, have become ubiquitous, digital cameras or other pervasive systems record location information along with the data. In this paper, we present an automatic approach to identify unusual data using location information. Given the location information, our system identifies unusual days, that is, days with unusual mobility patterns. We evaluated our detection system using a real wireless trace, collected at wireless access points, and demonstrated its capabilities. Using our system, we were able to identify days when mobility patterns changed and differentiate days when a user followed a regular pattern from the rest. We also discovered general mobility characteristics. For example, most users had one or more repeating mobility patterns, and repeating mobility patterns did not depend on certain days of the week, except that weekends were different from weekdays

    Predicting encounter and colocation events

    Get PDF
    Although an extensive literature has been devoted to mine and model mobility features, forecasting where, when and whom people will encounter/colocate still deserve further research effort s. Forecasting people\u2019s encounter and colocation features is the key point for the success of many applications rang- ing from epidemiology to the design of new networking paradigms and services such as delay tolerant and opportunistic networks. While many algorithms which rely on both mobility and social informa- tion have been proposed, we propose a novel encounter and colocation predictive model which predicts user\u2019s encounter and colocation events and their features by exploiting the spatio-temporal regularity in the history of these events. We adopt a weighted features Bayesian predictor and evaluate its accuracy on two large scales WiFi and cellular datasets. Results show that our approach could improve prediction accuracy with respect to standard na\uefve Bayesian and some of the state of the art predictors

    Measuring Regularity of Individual Travel Patterns

    Get PDF
    Regularity is an important property of individual travel behavior, and the ability to measure it enables advances in behavior modeling, mobility prediction, and customer analytics. In this paper, we propose a methodology to measure travel behavior regularity based on the order in which trips or activities are organized. We represent individuals' travel over multiple days as sequences of 'travel events' - discrete and repeatable behavior units explicitly defined based on the research question and the available data. We then present a metric of regularity based on entropy rate, which is sensitive to both the frequency of travel events and the order in which they occur. The methodology is demonstrated using a large sample of pseudonymised transit smart card transaction records from London, U.K. The entropy rate is estimated with a procedure based on the Burrows-Wheeler transform. The results confirm that the order of travel events is an essential component of regularity in travel behavior. They also demonstrate that the proposed measure of regularity captures both conventional patterns and atypical routine patterns that are regular but not matched to the 9-to-5 working day or working week. Unlike existing measures of regularity, our approach is agnostic to calendar definitions and makes no assumptions regarding periodicity of travel behavior. The proposed methodology is flexible and can be adapted to study other aspects of individual mobility using different data sources.Transport for London (Organization
    corecore