3 research outputs found

    Periodic Schrödinger operators with local defects and spectral pollution

    No full text
    23 pages, 5 figuresThis article deals with the numerical calculation of eigenvalues of perturbed periodic Schrödinger operators located in spectral gaps. Such operators are encountered in the modeling of the electronic structure of crystals with local defects, and of photonic crystals. The usual finite element Galerkin approximation is known to give rise to spectral pollution. In this article, we give a precise description of the corresponding spurious states. We then prove that the supercell model does not produce spectral pollution. Lastly, we extend results by Lewin and Séré on some no-pollution criteria. In particular, we prove that using approximate spectral projectors enables one to eliminate spectral pollution in a given spectral gap of the reference periodic Schödinger operator

    Riemannian Optimization for Solving High-Dimensional Problems with Low-Rank Tensor Structure

    Get PDF
    In this thesis, we present a Riemannian framework for the solution of high-dimensional optimization problems with an underlying low-rank tensor structure. Here, the high-dimensionality refers to the size of the search space, while the cost function is scalar-valued. Such problems arise, for example, in the reconstruction of high-dimensional data sets and in the solution of parameter dependent partial differential equations. As the degrees of freedom grow exponentially with the number of dimensions, the so-called curse of dimensionality, directly solving the optimization problem is computationally unfeasible even for moderately high-dimensional problems. We constrain the optimization problem by assuming a low-rank tensor structure of the solution; drastically reducing the degrees of freedom. We reformulate this constrained optimization as an optimization problem on a manifold using the smooth embedded Riemannian manifold structure of the low-rank representations of the Tucker and tensor train formats. Exploiting this smooth structure, we derive efficient gradient-based optimization algorithms. In particular, we propose Riemannian conjugate gradient schemes for the solution of the tensor completion problem, where we aim to reconstruct a high-dimensional data set for which the vast majority of entries is unknown. For the solution of linear systems, we show how we can precondition the Riemannian gradient and leverage second-order information in an approximate Newton scheme. Finally, we describe a preconditioned alternating optimization scheme with subspace correction for the solution of high-dimensional symmetric eigenvalue problems

    Etude mathématique de modèles quantiques et classiques pour les matériaux aléatoires à l'échelle atomique

    Get PDF
    Les contributions de cette thèse portent sur deux sujets.La première partie est dédiée à l'étude de modèles de champ moyen pour la structure électronique de matériaux avec des défauts.Dans le chapitre~ref{chap:ergodic_crystals}, nous introduisons et étudions le modèle de Hartree-Fock réduit (rHF) pour des cristaux désordonnés. Nous prouvons l'existence d'un état fondamental et établissons, pour les interactions de Yukawa (à courte portée), certaines propriétés de cet état. Dans le chapitre~ref{chap:défauts_étendus}, nous considérons des matériaux avec des défauts étendus. Dans le cas des interactions de Yukawa, nous prouvons l'existence d'un état fondamental, solution de l'équation auto-cohérente. Nous étudions également le cas de cristaux avec une faible concentration de défauts aléatoires. Dans le chapitre~ref{chap:numerical_simuation}, nous présentons des résultats de simulations numériques de systèmes aléatoires en dimension un.Dans la deuxième partie, nous étudions des modèles Monte-Carlo cinétique multi-échelles en temps. Nous prouvons, pour les trois modèles présentés au chapitre~ref{chap:kMC}, que les variables lentes convergent, dans la limite de la grande séparation des échelles de temps, vers une dynamique effective. Nos résultats sont illustrés par des simulations numériques.The contributions of this thesis concern two topics.The first part is dedicated to the study of mean-field models for the electronic structure of materials with defects. In Chapter~ref{chap:ergodic_crystals}, we introduce and study the reduced Hartree-Fock (rHF) model for disordered crystals. We prove the existence of a ground state and establish, for (short-range)Yukawa interactions, some properties of this ground state. In Chapter~ref{chap:défauts_étendus}, we consider crystals with extended defects. Assuming Yukawa interactions, we prove the existence of an electronic ground state, solution of the self-consistent field equation. We also investigate the case of crystals with low concentration of random defects. In Chapter~ref{chap:numerical_simuation}, we present some numerical results obtained from the simulation of one-dimensional random systems.In the second part, we consider multiscale-in-time kinetic Monte Carlo models. We prove, for the three models presented in Chapter~ref{chap:kMC}, that in the limit of large time-scale separation, the slow variables converge to an effective dynamics. Our results are illustrated by numerical simulations.CERGY PONTOISE-Bib. electronique (951279901) / SudocSudocFranceF
    corecore