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Etude mathématique de modéles quantiques et classiques pour les matériaux
aléatoires a I'échelle atomique.

Résumé: Les contributions de cette thése portent sur deux sujets.

La premiére partie est dédiée a I’étude de modéles de champ moyen pour
la structure électronique de matériaux avec des défauts. Dans le chapitre 2,
nous introduisons et étudions le modeéle de Hartree-Fock réduit (rHF) pour
des cristaux désordonnés. Nous prouvons l'existence d’un état fondamental
et établissons, pour les interactions de Yukawa (& courte portée), certaines
propriétés de cet état. Dans le chapitre 3, nous considérons des matériaux
avec des défauts étendus. Dans le cas des interactions de Yukawa, nous prou-
vons l'existence d’un état fondamental, solution de I’équation auto-cohérente.
Nous étudions également le cas de cristaux avec une faible concentration de
défauts aléatoires. Dans le chapitre 4, nous présentons des résultats de sim-
ulations numériques de systémes aléatoires en dimension un.

Dans la deuxiéme partie, nous étudions des modéles Monte-Carlo ciné-
tique multi-échelles en temps. Nous prouvons, pour les trois modéles présen-
tés au chapitre 6, que les variables lentes convergent, dans la limite de la
grande séparation des échelles de temps, vers une dynamique effective. Nos
résultats sont illustrés par des simulations numériques.

Mots-clés: opérateurs de Schrodinger aléatoires, cristaux désordonnés, mod-
éle de Hartree-Fock réduit, limite thermodynamique, modéle de type Monte-
Carlo cinétique, dynamique effective, problémes multi-échelles en temps, pro-
cessus de Poisson.

Mathematical study of quantum and classical models for random materials
in the atomic scale.

Abstract: The contributions of this thesis concern two topics.

The first part is dedicated to the study of mean-field models for the
electronic structure of materials with defects. In Chapter 2, we introduce
and study the reduced Hartree-Fock (rHF) model for disordered crystals. We
prove the existence of a ground state and establish, for (short-range) Yukawa
interactions, some properties of this ground state. In Chapter 3, we consider
crystals with extended defects. Assuming Yukawa interactions, we prove the
existence of an electronic ground state, solution of the self-consistent field
equation. We also investigate the case of crystals with low concentration of
random defects. In Chapter 4, we present some numerical results obtained
from the simulation of one-dimensional random systems.

In the second part, we consider multiscale-in-time kinetic Monte Carlo
models. We prove, for the three models presented in Chapter 6, that in
the limit of large time-scale separation, the slow variables converge to an
effective dynamics. Our results are illustrated by numerical simulations.

Key words: random Schriodinger operators, disordered crystals, electronic
structure, reduced Hartree-Fock theory, thermodynamic limit, kinetic Monte-
carlo type models, effective dynamics, multiscale-in-time problems, Poisson
process.
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Introduction (Fr)

Cette thése comporte deux parties. La premiére partie concerne 1’étude de
modéles de champ moyen pour la structure électronique de matériaux avec
des défauts. Nous y étudions le modéle de Hartree-Fock réduit pour des
cristaux avec des défauts locaux, étendus et stochastiques. Dans la deuxiéme
partie, nous étudions la dérivation de modéles effectifs de systémes multi-
échelles en temps dans le cadre du modéle Monte-Carlo cinétique.

Nous décrivons ci-aprés les résultats obtenus dans les divers chapitres de
la theése.

Chapitre 1: Introduction et résumé des résultats de
la partie 1

Dans le premier chapitre, nous présentons le contexte scientifique des chapitres 2
et 3 et résumons les résultats principaux de ces chapitres. Dans la section 1.2,
nous présentons trois modéles pour décrire les systémes moléculaires finis
en chimie quantique. Nous commencgons par le modéle de Schrodinger a
N-corps, qui est le modéle de référence pour les systémes finis non rela-
tivistes. Les sections 1.2.2 et 1.2.3 sont dédiées & la présentation de deux
types d’approximation du modéle de Schrédinger & N-corps, a savoir les
modeéles de type Hartree-Fock et les modéles de la Théorie de la Fonction-
nelle de la Densité (DFT). Ensuite, nous expliquons dans la section 1.3 com-
ment les modeéles pour des systémes infinis sont dérivés & partir des modéles
pour les systémes finis. Dans la section 1.3, nous nous concentrons sur la
description des cristaux parfaits et des cristaux avec des défauts détermin-
istes dans le cadre du modéle Hartree-Fock réduit (rHF). Nous présentons
dans la section 1.5 deux modéles pour les systémes stochastiques: le mod-
éle linéaire et le modéle rHF. Dans la section 1.5.3, nous nous intéressons a
un cas particulier de systémes stochastiques, qui est celui des cristaux avec
une faible concentration de défauts aléatoires. Finalement, nous présentons
quelques résultats numériques de la simulation de systémes stochastiques en
dimension un.

Chapitre 2: Modéles de champ moyen pour les cristaux
désordonnés

Dans le chapitre 2, nous détaillons et développons la théorie introduite dans
un article [29], écrit avec Eric Canceés et Mathieu Lewin, qui a été publié
dans le Journal de mathématiques pures et appliquées. Nous y construisons
un cadre fonctionnel pour les modéles de structure électronique de champ
moyen de type Hartree-Fock ou Kohn-Sham pour des systémes quantiques

13



désordonnés. Dans un premier temps, nous établissons quelques propriétés
importantes des matrices densité a un corps fermioniques stochastiques, sous
une hypothése de stationnarité vis-a-vis de l'action ergodique d’un groupe de
translations. En particulier, nous démontrons des inégalités de Hoffmann-
Ostenhof et de Lieb-Thirring pour les matrices densité ergodiques, ainsi que
des propriétés de compacité faible de I'’ensemble de ces matrices densité.
Nous discutons également la question de la représentabilité des densités a
un corps associées. Dans un deuxiéme temps, nous étudions le probléme
de la résolution de I’équation de Poisson pour une distribution de charge
stationnaire donnée, en définissant 1’énergie de Coulomb comme la limite de
I’énergie de Yukawa lorsque le paramétre de Yukawa tend vers zéro. Enfin,
nous utilisons ces outils pour étudier un modéle de champ moyen particulier
(le modéle rHF) pour un cristal désordonné dans lequel les noyaux sont
modélisés par des particules classiques dont les positions et les charges sont
aléatoires. Nous démontrons l’existence d’un minimiseur de 1’énergie par
unité de volume et l'unicité de la densité de 1’état fondamental. Pour des
interactions de Yukawa (& courte portée), nous prouvons en outre que la
matrice densité de I'état fondamental vérifie une équation non linéaire, et
que le modéle proposé est bien la limite thermodynamique du modéle de
supercellule.

Chapitre 3: Le modéle de Hartree-Fock réduit pour
des cristaux avec des défauts non-locaux interagis-
sant avec un potentiel & courte portée

Dans le chapitre 3, nous détaillons les résultats contenus dans un article [92]
qui a été accepté pour publication dans les Annales Henri Poincaré. Nous y
considérons des matériaux avec des défauts dans le cadre du modéle rHF. Les
noyaux sont modélisés par des particules classiques disposées autour d’une
configuration périodique de référence. Nous supposons que cette perturba-
tion est petite en amplitude, mais elle n’a pas besoin d’étre localisée dans
une certaine région de I’espace ou d’avoir une quelconque invariance spatiale.
En supposant que toutes les particules intéragissent a travers le potentiel de
Yukawa, nous prouvons l’existence d’un état fondamental électronique, so-
lution de I’équation rHF non linéaire. Ensuite, en étudiant les propriétés
de décroissance de cette solution pour des défauts locaux, nous traitons le
cas de cristaux avec une faible concentration de défauts aléatoires. Nous
prouvons que la densité d’états de 'opérateur de champ moyen associé a de
tels cristaux admet un développement limité par rapport au paramétre de
Bernoulli p qui détermine la concentration des défauts. Une étape impor-
tante dans notre analyse est ’étude de la réponse diélectrique d’un cristal a
une perturbation de charge effective.

14



Chapitre 4: Simulation numérique de cristaux aléa-
toires

Dans le chapitre 4, nous présentons les résultats de simulations numériques
de systémes stochastiques en dimension un dans le cadre du modéle linéaire
et du modele rHF. Ces simulations ont pour but d’illustrer quelques résultats
théoriques discutés dans les chapitres précédents d’une part, et d’essayer de
comprendre des phénoménes qui n’ont pas encore été étudié théoriquement,
d’autre part. Nous simulons des alliages aléatoires résultants de la combinai-
son de deux cristaux parfaits. Nous supposons qu’a chaque site k € Z, il y a
une probabilité p de voir le premier type de cristaux et une probabilité 1 —p
de voir le deuxiéme type de cristaux, et ce, indépendamment de ce qui se
passe dans les autres sites. Les méthodes numériques que nous utilisons sont
la méthode de supercellule avec une discrétisation en ondes planes, I’'Optimal
Damping Algorithm (ODA) et la méthode de Monte-Carlo. Une fois I’état
fondamental du systéme obtenu, nous pouvons calculer les quantités d’intérét
pour notre étude. Nous nous intéressons dans un premier temps a la con-
vergence de 'énergie par unité de volume et de la densité d’états dans la
limite thermodynamique, a savoir, quand la taille du domaine de simulation
devient trés grande. Ensuite, nous étudions les propriétés de localisation de
I’Hamiltonien. Comme le spectre de I’Hamiltonien restreint a une boite de
taille finie est purement discret, nous caractérisons ses propriétés de localisa-
tion en regardant combien les vecteurs propres associés sont localisés. Pour
cela, nous utilisons un critére basé sur la variance de ces vecteurs propres.
Enfin, nous simulons des cristaux avec une faible concentration de défauts
aléatoires et étudions le comportement de la densité d’états en fonction du
parameétre de Bernoulli p, dans la limite p — 0.

Dans la deuxiéme partie de la thése, nous étudions des systéme multi-
échelles en temps dans le cadre du modéle Monte-Carlo cinétique.

Chapitre 5: Introduction et résumé des résultats de
la partie 11

Dans ce chapitre, nous présentons le contexte scientifique du travail dé-
taillé dans le chapitre 6 et nous résumons les principaux résultats qui y
sont obtenus. Nous commencons par présenter trois classes de modéles com-
munément utilisés en dynamique moléculaire (MD). Il s’agit de la dynamique
Hamiltonienne, la dynamique de Langevin et les modéles de Monte-Carlo
cinétique (kMC). Nous nous concentrons ensuite sur les systémes multi-
échelles en temps dans le cadre des modéles kMC et discutons la problé-
matique de trouver une dynamique effective pour des observables macro-
scopiques. Un résumé de nos travaux est aussi inclus dans ce chapitre.

15



Chapitre 6: Dynamique effective pour des modéles
de Monte-Carlo cinétique avec des échelles de temps
rapides et lentes

Les résultats de ce chapitre ont fait 'objet d’un article [93] qui a été soumis
pour publication. Nous considérons trois systémes multi-échelles en temps
dans le cadre du modele kMC, ou certaines variables évoluent & une échelle
de temps rapide, alors que d’autres variables évoluent a une échelle de temps
lente. Dans les deux premiers modéles, nous considérons une particule qui
évolue dans un potentiel en dimension un qui a des petites et des hautes
barriéres d’énergie. Ces derniéres, divisent ’espace d’états en régions méta-
stables (macro-états). Dans la limite ou le rapport entre les hautes et les
petites barriéres tend vers 'infini, nous identifions une dynamique effective
qui porte uniquement sur ces macro-états et prouvons la convergence du
processus vers un modéle kMC. Le troisiéme modéle que nous considérons
consiste en un systéme de deux particules. L’état de chaque particule évolue
a une échelle de temps rapide en conservant sa propre énergie. De plus, les
particules peuvent échanger de I’énergie a une échelle de temps lente. Nous
considérons la variable macroscopique "énergie de la premiére particule" et
prouvons, dans la limite d’une grande séparation des échelles de temps, que
sa dynamique converge vers une dynamique effective portant sur les énergies
admissibles. Pour tous les modéles, nous illustrons nos résultats théoriques
par des simulations numériques.
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Chapter 1

Introduction and summary of
results
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1.1 Introduction

The first part of this thesis concerns the mathematical modeling of materials
with defects at the atomic scale.

The mathematical modeling and the numerical simulation of materials
with defects is a prominent topic in solid state physics and materials sci-
ence [85, 149]. The presence of defects in materials induces many interesting
properties that are crucial in applications such as doped semi-conductors,
aging materials and thin films.
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In addition to industrial applications, the modeling of materials raises
interesting mathematical and numerical questions. Mathematicians have
increasingly studied condensed matter problems and fruitful collaborations
between mathematicians and physicists gave answers to complex questions.

The present work follows on from this context. Our results are theoreti-
cal, but some of them are motivated by numerical simulation considerations.
The mathematical fields involved in this work are variational calculus, spec-
tral theory, probability theory, PDEs and numerical methods.

We describe matter at the atomic scale in the framework of quantum
mechanics. Unlike classical molecular dynamics (see Chapter 5) where the
atoms are considered as point particles with no internal structure, this the-
ory describes the elementary components of matter such as the nuclei and
the electrons. We do not recall here the founding principles of quantum
mechanics and refer the reader to [63] for a very good introduction.

We are mainly interested in the description of the electronic ground state
of the systems we study, which is the state of the electrons that minimizes the
energy. Computing the electronic ground state is a key step in the calculation
of the chemical and physical properties of materials.

In the first chapter, we present the scientific context of our work detailed
in Chapters 2 and 3, and we summarize the main results of these chapters. It
is organized as follow. In Section 1.2 we present three models for finite molec-
ular systems. We start with the N-body Schrodinger model in Section 1.2.1,
which is the reference model to describe non-relativistic finite quantum sys-
tems. Sections 1.2.2 and 1.2.3 are devoted to two types of approximation
of the N-body Schrodinger model, namely, the Hartree-Fock type models
and Density Functional Theory (DFT) models. We then explain how to
derive models for infinite systems in Section 1.3. In Section 1.4, we concen-
trate on describing perfect crystals and crystals with deterministic defects in
the reduced Hartree-Fock model. We present in Section 1.5 two models for
stochastic systems: the random linear model and the reduced Hartree-Fock
model. In Section 1.5.3, we study a particular case of stochastic systems,
which is crystals with a low concentration of random defects. Finally, we
present some numerical results concerning the simulation of one-dimensional
stochastic systems.

1.2 Mathematical models for finite systems

We present in this section three categories of models used to describe finite
molecular systems. The reader can also find a mathematical description of
these models in [32].

We start by defining the N-body Schrodinger model. It is the reference
model in non-relativistic quantum chemistry, from which are derived the
approximate models of Hartree-Fock type and Density Functional Theory
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presented in Sections 1.2.2 and 1.2.3.

1.2.1 The N-body Schrédinger model

In quantum chemistry, the N-body Schrédinger model is the fundamental

model describing finite systems of electrons and nuclei in molecules contain-

ing no heavy atoms. It is an ab initio model, that is, it does not depend on

any empirical parameters and only depends on universal physical constants.
To simplify notation, we adopt the system of atomic units in which

h=1, me=1 e=1, 4dmweg=1,

where h is the reduced Planck constant, m, the mass of the electron, e the
elementary charge, and g the dielectric permittivity of the vacuum. Also,
we work with spinless electrons. As the spin plays no role in our study, our
arguments can be straightforwardly extended to models with spin.

As usual in quantum chemistry, we adopt the Born-Oppenheimer approx-
imation [16], which consists in considering that nuclei are classical particles
and that only electrons are quantum particles. This approximation relies on
the fact that nuclei are much heavier than electrons; their dynamics can thus
be decoupled [86].

We consider a system composed of

e M classical nuclei at positions R = (Ry,... Rys) and of charges z =
(z1,...2Mm), described by a positive Radon measure p,

e N electrons described by a wavefunction ¥ € L2(R3V).

Here, the space dimension is equal to d = 3 corresponding to the physical
space. Most of the results below are also valid in dimensions d = 1 and
d=2.

The nuclear density is assumed to be of the form

M
M:ZZka7 (1.1)
k=1

where [ x; = 1. For point-like nuclei, we have xj = dg,, while for smeared
nuclei, x; € C°(R3).

In quantum mechanics, |U(z1,--- ,2x)|* is interpreted as the probability
density to find the particles 1,--- , N at the positions x1, - - - , xy respectively.
The wavefunction W thus needs to be normalized: [[W[| 2gsvy = 1. Also,
the particles are assumed to be indistinguishable. Therefore, permuting
two indexes x; and z; should not change the probability, that is, for any
1 <i<j <N,V should satisfy



In fact, it can be proved that in quantum mechanics, the wavefunction of a
system of N identical particles is either symmetric

with respect to the permutation of the R3-variables x;. This condition clas-
sifies the particles into two categories: bosons, such as photons, which have
symmetric wavefunctions, and fermions, such as electrons, which have an-
tisymmetric wavefunctions. The antisymmetry of the wavefunction implies
that if z; = x; for ¢ # j, then ¥(zq,--- ,xn) = 0, which corresponds to the
fact that two electrons cannot be in the same state. This is called the Pauli
exclusion principle. In the following, we consider wavefunctions ¥ which are
normalized functions in L2(R3Y), the space of antisymmetric square inte-
grable functions.

In the Born-Oppenheimer approximation, the total energy of the system
at the state W is then given by

EN(//J? \II) = <\I]’ H,LL,N\I]>L2(R3N)’ (13)

where the Hamiltonian H, y reads

N N
1 1
Hoy =Y =580+ Vi) + > ————+U.  (14)
i=1 i=1

1<i<j<N |zi — a5

The first term of the Hamiltonian represents the kinetic energy of the elec-
trons, where we have denoted by A,, the Laplace operator acting only on
the x; variable. The second term accounts for the electrostatic interaction
energy between the electrons and the nuclei. The potential created by the
nuclei V), is the unique solution of Poisson’s equation

—AV, =4n(—p) (1.5)

that vanishes at infinity. It is given by

1
Vi(x)=—px —.
g ]

The third term of (1.4) accounts for the electrostatic interaction energy be-
tween the electrons. Finally, U(u) is the electrostatic interaction between
the nuclei. When the nuclei are assumed to be point-like particles, then

_ “jck
U= 2 |Rj — Rg|

1<j<k<mM "7
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When g is given by (1.1), with smooth enough functions yy, then

Up) = Z ZjZk/]Ri’)x]Ri’) X3 ()d dy.

1<j<k<M 2~y

Here, we have assumed that all the particles interact through the Coulomb
potential 1/|x|. The operator H, y is a self-adjoint operator on L2(R3V)
with domain H2(R3*V) and form domain H}(R3"), where the subscript "a"
indicates that we only consider antisymmetric functions.

The ground state energy of the system is given by

In(p) = inf{EN(,u, W), U e HYRN), W] paggon) = 1} . (1.6)

One of the most important problems in electronic structure calculations is
to find the electronic ground state Wy, that is, the minimizer of Ix(u). This
state greatly influences the physical and chemical properties of the system as,
according to Hamilton principle, it is the "most stable" state of the electrons.
One can also find ¥y by solving the stationary Schrédinger equation

H, nVo = AV, (1.7)

where )g is the smallest eigenvalue of the operator H,, . As Wq is normal-
ized, then the ground state energy is given by

In(p) = En(p, ¥o) = Ao

The excited states are the solutions of the stationary Schrédinger equation
H, NV = )\V,

for higher energies A > Ag.

When (1.6) admits a minimizer, we say that the electrons are bound to the
nuclei and Wy is called a bound state. It has been proved by Zhislin [157] that
if N < Z+1, then the system admits a ground state. It is an interesting open
problem, known as the ionization conjecture, to determine the maximum
number of electrons N.(Z) that a molecule of total nuclear charge Z can
actually bound. It has been proved by Lieb [108] that the system has no
bound states if N > 27 + 1, thus N.(Z) < 2Z + 1. This bound has been
improved by Nam [120] who proved that N.(Z) < 1.22Z + 373. We also
mention the result of Lenzmann and Lewin [98| for systems with only one
atom which states that H, y has no eigenvalues, even embedded in the
essential spectrum, if N > 47 + 1.

The wavefunction ¥ contains in principle all the information about the
system. But computing ¥ numerically is a challenging task. Indeed, a direct
numerical approach to solve (1.7) demands to discretize the space R3V, N
being the number of electrons in the system. When N is more than a few
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units, this discretization problem is out of reach of the current computational
and algorithmic capacities because of its high dimensionality. Also, we are
interested in studying large systems where N, M — +o0o. Deriving models
for such systems from the N-body Schrédinger model is a very difficult task
as we will explain in Section 1.3. One of the difficulties is that the wave-
function W lives in the function space L2(R3"), which depends on N, the
number of electrons.

For these reasons, the N-body model is often approximated by nonlinear
mean-field models, where the variable that describes the electronic state is
a "simpler" mathematical object compared to the wavefunction. To intro-
duce these models, let us define the electronic density pg associated with a
wavefunction ¥

py(x) =N |V (x,zg, - ,:UN)|2 dxo - -dzy.
R3(N-1)

It satisfies
pw € LY(R?), py >0 and / py = N.
R3N

We also define the one-body density matriz ~g which is the linear operator
on L%*(R3) whose kernel is given by

V‘If(x7y) =N \Ij(wafo" 735N)\I’(y7x27”' ,I'N)d.%'z"'dl']\[,
R3(N—1)

in the sense that for any ¢ € L?(R3),

(vop)(x) = /RS Yo (z,y)p(y) dy.

The two main approximations of the N-body model are:

e wavefunction methods, where the energy functional of the system is un-
changed, but the minimization problem (1.6) is considered on a smaller
set of wavefunctions. A famous model in this class is the Hartree-Fock
model, where the electrons are described by a Slater determinant. The
energy can then be expressed only in terms of the one-body density
matrix vy (see Section 1.2.2). For these methods, the ground state
energy is always greater than or equal to the N-body ground state
energy.

e Density Functional Theory, where the electrons are described by the
electronic density pg only. The information contained in the electronic
density is less precise than the one contained in the wavefunction, but
it is sufficient to calculate certain properties of the system.
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1.2.2 Hartree-Fock type models

The Hartree-Fock model
The Hartree-Fock (HF) model is the first step of all wavefunction methods.
In these methods, the energy 5217 n is minimized on a particular class of
wavefunctions.

In the Hartree-Fock model, we restrict the minimization set in (1.6) to
the set of Slater determinants, which are functions of the form

Blar, an) = (1A Ap) (@1, san) = V%det(w(scj)),

where the functions p; € H!(R?) satisfy (@i pj)2msy = dij. It is easy to
check that ® is a normalized function of L2(R3"). In this case, the electronic
density and the one-body density matrix read

N
po = _lpil®
=1
and
N
Yo = lea)eil -
i=1

The notation |u)(v| denotes the operator defined for any ¢ € L?(R3) by
lu)(v| ¢ = (v, ) p2@syu. This form of wavefunctions mathematically origi-
nates from the fact LZ(R*N) = AN L?(R?), where the latter is the vector
space generated by Slater determinants. This means that any function in
L2(R3*N) can be approximated to any precision by a finite linear combination
of Slater determinants. Models where the wavefunction is approximated by a
finite linear combination of Slater determinants are called multiconfiguration
methods. These methods are more precise than the Hartree-Fock model, but
are more complicated to study theoretically and to solve numerically. We
refer to (94, 53, 142, 103, 23] for an introduction to these methods. From
a physical point of view, the Slater determinant can be interpreted as the
state of IV "uncorrelated" electrons, each electron ¢ living in the orbital ¢;.

Calculating the N-body energy for the state ® gives the Hartree-Fock
energy

N
1
S0 ®) = (o on) =5 3 [ 1Vl [ Vs
i=1

1 1
+_/ Mdmdy__/ Ve (&oY) 4o+ U ().
2 Jrsxms |7 — 9 2 Jraxms 1T — |
(1.8)

The first term of (1.8) represents the kinetic energy of the electrons. The
second term stands for the electrostatic interaction between the electrons
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and the nuclei. The third term, called the Hartree or direct term, accounts
for the classical electrostatic interaction energy between the electrons. The
next to the last term is called the exchange term. It is a purely quantum
term as it results from the antisymmetry of the wavefunction.

Finding the electronic ground state within the HF model boils down to
solving the minimization problem

inf {555\/(%, o), i € HY(RY), (i, 05) pas) = 0i V1 <4, < N}-

(1.9)
As we have restricted the minimization set of the IN-body minimization
problem, the ground state energy given by the Hartree-Fock theory is always
greater or equal to the ground state energy given by the N-body model. The
difference between these two energies is called the correlation energy. The
terminology comes from the fact that the Slater determinants do not include
correlation between electrons, apart from the one originating from the Pauli
exclusion principle.

The model we obtain is still an ab initio model. It has the advantage of
being less costly to solve numerically compared with the N-body problem, as
we now need to discretize N times the space R? instead of discretizing R3V.
But the HF functional is non-quadratic and non-convex in the orbitals ¢;,
which makes the theoretical analysis of the Hartree-Fock model complicated.

The existence of a minimizer of the Hartree-Fock energy has been proved
for neutral or positively charged systems N < Z + 1 in [113]. The proof of
Lieb [108] can be adapted to show that the HF functional has no minimizers
if N > 2Z + 1 and it has been proved in [147| that there exists a constant
C such that there are no minimizers if N > Z 4+ C. The question of the
uniqueness of the minimizer in its full generality is still an open problem.
The uniqueness in the case of closed shell atoms is partially treated in [62].

When the Hartree-Fock energy admits a minimizer ® = ¢1 A --- A oy,
then, up to a change of (1, - ,pn) using an orthogonal transformation
which does not change the energy, the ;’s satisfy

Hy i = Nipi
HCI;F:_%AJFV—K% ,V1<i<N, (1.10)
—AV =dn (po — )

where the operator K is defined for an integral operator v by

V(@Y
(K0) @) = [ T80 0)ay.
r3 |2 =y
The operator H, gF, called the Fock operator, is the mean-field Hamiltonian of

the system. Each electron is described by the Hamiltonian H, gF that includes
the mean-field created by all the other electrons. The Lagrange multipliers
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A1 < --- < Ay are the smallest eigenvalues, counting multiplicities, of the
operator HCI;F. An important result known as no unfilled shell property due
to Bach, Lieb, Loss and Solovej [7] states that there is a gap between the
occupied energies and the rest of the spectrum Ay < Ayy1. These two
properties are specific to the HF theory and are important in the numerical
resolution of the HF problem [31, 100].

Density matrix formalism
To describe infinite systems later on, it is more convenient to reformulate
the HF problem in terms of the one-body density matrix [6, 105]. In this
formalism, the electrons are described by the orthogonal projector vy¢ of rank
N and (1.10) can be recast as

v =1(HI" <ep)

1
HF
H)" = —§A +V - K,
—AV =dm (py — ),
where formally p.(z) = v(z, ) and the Fermi level e is any real number in
the gap [An, An41). For a self-adjoint operator A and an interval I C R, we

use the notation 1(A € I) to refer to the operator f(A), where f : z +— 17(z),
defined by the functional calculus. The HF energy then reads

H 1 1 p (x)p (y)
EF = =T} —A'y +/ V.p +—/ PV de d
s (fY) 2 ' ( ) R3 pey 2 R3xR3 ‘.%' y‘ Y

—1/ Md:cdy+U(u). (1.11)
2 Jraxmrs [T —yl

and is minimized on the set of rank N projectors
Py = {’y* =, 2= v, Tr(v) = N, Tr (—Av) < oo}.

Minimizing the energy E};IF on Py turns out to be equivalent [105] to mini-
mizing EEF on I, the convex hull of Py

Kn={y"=70<v<1Tr(y) =N, Tr (-Ay) < oo}.

This property is very useful in mathematical analysis as well as for numerical
methods. The properties of the one-body density matrices of Ky can be
found in the Appendix 2.B.

The reduced Hartree-Fock model

The reduced Hartree-Fock (rHF) model, also called the Hartree model in the
physics literature, is obtained from the HF model by neglecting the exchange
term in (1.11). In certain regimes, the exchange term is a lower order term
compared to the other terms [111]. The rHF problem reads

IN" () = inf {7 (7), v € Ky}, (1.12)
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where

ENF (y) = L (—A7y) +/ Vupy + ! / Pr(2)pr(y) dxdy + U(p).
2 R3 2 Jrsxrs |z —yl
The rHF energy functional is more amenable to mathematical analysis as it
is a convex functional of the density matrix . Similarly to the HF case, the
rHF problem (1.12) has been proved in [146] to admit a ground state when
N < Z + 1 and not to have a ground state when N > 27 4+ M — 1. When
the rHF functional has a minimizer, then, thanks to the strict convexity of
P ngng % dx dy and the convexity of the set Ky, these minimizers

share the same density, and they are solutions of the rHF equation:

v=1(HM <ep)+6

1
rHF

HY = —SA+V (1.13)

—AV =dm (py — ),

where ¢ is a self-adjoint operator satisfying 0 < § < 1(HE/HF = ep). The
operator 0 is non zero if the last shell is only partially filled.

In the sequel we concentrate on the rHF model as it is a simple enough
model to allow a rigorous mathematical analysis, while still being rich enough
to describe interesting physical phenomena.

Finally, we note that the density matrix « describing the electrons in
the HF and rHF models belongs to B(L?(R?)), the space of bounded linear
operators on L?(IR?), independently of the number of electrons in the system,
unlike the N-body model as we explained earlier. This is an interesting
feature for the derivation of models for infinite systems.

1.2.3 Density Functional Theory

Presentation of Density Functional Theory

The idea behind Density Functional Theory (DFT) is that the ground state
energy In(u) defined in (1.6) can be found by solving a problem depending
only on the electronic density p. The evident computational gain is that the
new problem is posed on the low dimension space R? compared to R*V. The
first theoretical justification of this approach goes back to Hohnenberg and
Kohn [74]. Kohn was awarded the Nobel prize in chemistry in 1998 for the
significant contribution of the DFT in the understanding of the electronic
structure of materials. We present here an approach that has been developed
by Levy and Lieb [101, 107]. It relies on writing I (u) as

In(p) = inf{/ Vipw + <\I’,H0,N\If>, S Hal(R?’N), | W] = 1} +U(p)
R3

- { [ v+ FLL<p>} U (1.14)
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where
cn = {p. 30 € BLR™), |9 2oy = 1, po = p}

and
Fii(p) = inf {(‘I],HO,N\I’>, Ve Hy(R*™), [0]| j2mony = 1, pw = P}-

Identifying the set of admissible densities Cpy is known as an N -representability
problem. It has been proved by Lieb in [107] that

Cy = {p € LY(R?), /Rap =N,\p¢€ Hl(R?’)}.

The Levy-Lieb functional Fip, is a universal functional that does not de-
pend on the particular molecular system at hand. Unfortunately, we cannot
use (1.14) to calculate the ground state energy In(u) as there is no explicit
formula of the Levy-Lieb functional F11,. However, a great effort and a large
literature are devoted to find good approximations of Fy1,. We present below
two important examples of such approximations.

Thomas-Fermi like models

The Thomas-Fermi (TF) and the Thomas-Fermi-von Weizsicker (TFW)
models are orbital-free DFT models, that is, the functional Fiy, is approxi-
mated by an explicit functional of p and its derivatives. These functionals
are given by

1
FT(p) = CTF/ P+ —/ @)ply) 4 dy (1.15)
R3 2 Jrsxms |z —yl

and

1
PV =y [ (ypPacn [ pPag [ HO g,
R3 R3 2 Jraxrs |z — Yl

In both models, the electrostatic interaction between the electrons is approx-
imated by the Hartree term

%/RS/RS%M@.

As to the approximation of the kinetic energy, it relies on the expression of
the kinetic energy of a non-interacting homogeneous electron gas, whose ki-
netic energy per unit volume is Ctg pg/ 3, where pq is its uniform density. Note
that we have the lower bound given by the Lieb-Thirring inequality [115, 116]

5/3
K/RB paf3 < V|72 g - (1.16)
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Solving the minimization problem with the energy (1.15) gives singular den-
sities as no derivative of p is involved. Von Weizsédcker brought in a correc-
tion to this approximation, by adding the term fRS \Vy/pw |2 which is also
controlled by the kinetic energy of the N-body wavefunction thanks to the
Hoffman-Ostenhoff inequality [73]

L9V < V0o, (1.17)

There is no clear choice of the constant Cyy. Von Weizsédcker has proposed
Cw = 1 based on (1.17), but other values have been proposed to suit particu-
lar regimes (see e.g. [106, 41]). The TF and TFW models are not very much
used in electronic structure calculations, but their mathematical analysis
raises many interesting questions that are also relevant for more complicated
models.

Kohn-Sham models

Similarly to the HF model, Kohn Sham (KS) models describe the electrons
through N orbitals (¢1, -+ ,¢n). In these models, the kinetic energy and
the potential energy are respectively approximated by

1 ZN L p(x)p(y)
Vgoi 2[ and dx dy.
2 i=1 H | ) 2 /RS /Rs |z —yl /

An exchange-correlation term FEy.(p) is added to correct these approxima-
tions. A huge number of functionals have been proposed in the literature for
Ex.(p) [44]. The most widely used in condensed matter physics are obtained
from the Local Density Approzimation (LDA) [90, 129] or the Generalized
Gradient Approzimation GGA [10, 127, 128, 41].

1.3 Infinite quantum systems

In the sequel, we are interested in the macroscopic properties of materials.
For this reason, we need to consider bulk matter where M and N are very
large (M ~ 10%* in 1 cm? of material). Mathematically, we consider the limit
M, N — 4o0.

An important mathematical question when considering large quantum
systems is the stability of matter, that is, does the matter collapse or ex-
plode when M, N — oo? Loosely speaking, a well known fact to physicists
is that the energy is an extensive quantity, in the sense that the energy of
a homogeneous system composed of 2M atoms is asymptotically twice the
energy of a system composed of M atoms. The question of the thermody-
namic limit concerns the mathematical proof of this fact in the context of
quantum mechanics. A first step for answering this question is to prove the
lower bound

In, (pr) > —CNp, (1.18)
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which is known as the stability of the second kind. Here, the energy Iy (u) has
been defined in (1.6), pr, = plr,, where I'y, is a box of side size L, p is the
nuclear density, and Ny, is the number of electrons in the box I';. Several
types of conditions can be imposed on the boundary of the box I';, and
the charge constraint Ny. For example, one can assume Dirichlet boundary
conditions and the neutrality of the system Nj = fFL . The bound (1.18)
has been proved in the context of the Schrodinger model [115, 112, 66, 67|
under the assumption that the charges of the nuclei are bounded z; < C.
The next important question is the existence of the thermodynamic limit,
that is, the proof of the behavior

Iny(nr) ~ eNi, (1.19)

where e is to be interpreted as the energy per unit volume. When e exists, it
is also interesting to be able to calculate it and to identify the limiting state.
The first results of this form for Coulomb interacting systems are due to Lieb
and Lebowitz in [109]. In the latter work, nuclei are considered as quantum
particles and rotational invariance plays a crucial role. For quantum sys-
tems in which the nuclei are classical particles, the thermodynamic limit
was proved for perfect crystals by Fefferman [47] (a recent proof has been
proposed in [67]). But in all these cases no information about the limiting
energy, the convergence of the ground state or its properties is known.

For some of the mean-field models presented in Sections 1.2.2 and 1.2.3,
it was possible to identify the limiting state and to study its properties. For
TF and TFW models, this was done in [114, 35, 13]. The main ingredient
of the proof for these models is the strict convexity of the energy functional,
thus the uniqueness of the minimizing density.

Similar results are obtained for the rHF model. We will detail these
results in Section 1.4.

In the framework of the HF and KS models, it is possible to guess what
the limiting model is for perfect crystals, thanks to the periodic structure.
But the rigorous proof of the thermodynamic limit toward this limiting mod-
els is still an open question.

Once the existence of the thermodynamic limit is proved, an interesting
question is to study the next term in the expansion (1.19). A typical case
of interest is local perturbations of infinite systems. In this case, the energy
per unit volume of the system with and without the perturbation converges
to the same quantity e, but clearly, the states of the electrons do not. For a
defect v, the next order in the expansion (1.19) is the defect energy I":

Iny(nr +v) = Iny(pr) = 17+ o(1). (1.20)

oo

The existence of I” in the N-body model is still an open problem even for
short-range interactions. For the TFW and the rHF model, I¥ has been
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proved to exist and a variational model allowing its calculation has been
proposed respectively in [26, 24]. We also mention the work of Lieb and
Simon [114] who have treated local defects in the homogeneous electron gas
in the TF framework. We will detail the rHF case in Section 1.4.2.

The main difficulty of these problems is the long range character of the
Coulomb interaction. To understand this difficulty, let us consider the po-
tential created by point-like nuclei of charge z; = 1 located at the sites of
73N Iy

Vi(z) = Z Ok *%: Z |:cik:|

keZ3Nly, kEZ3NTy,

This series is not convergent as L goes to infinity, which means that the
potential goes to infinity everywhere in R?. To ensure the stability of matter,
this suggests that each electron does not see the bare nuclei, but sees the
nuclei screened by the neighboring electrons. For this reason, it is necessary
when studying infinite systems to prove that this screening actually happens
and that each electron only sees the dipole or the multipole that the nuclei
and their neighboring electrons form. The potential then decays faster and
the series become convergent.

In the following, we also consider models with short-range Yukawa in-
teraction of parameter m > 0, that is, the potential V' created by a charge
density p is the solution of the regularized Poisson equation

—AV +m?V = 4rp. (1.21)

The Coulomb interaction is then the limit when m goes to 0 of the Yukawa
interaction. Taking the Fourier transform of (1.21), we have that

V:p*Ym7

where the Yukawa kernel Yy, is the inverse Fourier transform of K + 47 (m?+
|K[*)~1. It is given in dimension d = 3 by

—m|z|

The proof of the existence of the thermodynamic limit with Yukawa interac-
tion is simpler than the Coulomb case. For perfect crystals, it follows from
the work of Fisher and Ruelle [49].

1.4 The reduced Hartree-Fock model for crystals

In ideal crystals, also called perfect crystals, the nuclei are arranged according
to a discrete periodic lattice. While there are crystals in nature that are
close to this description, many of them contain defects, either local such as
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vacancies, interstitial atoms and impurities, or extended such as dislocations
and grain boundaries.

In the following we present the rHF model used to describe each of these
three cases.

1.4.1 Perfect crystals

In perfect crystals, the nuclei and electrons are arranged according to a dis-
crete periodic lattice R of R3, in the sense that both the nuclear density p
and the electronic density are R-periodic functions (see Figure 1.1). For sim-
plicity, we take R = Z3 in the following. The rHF model for perfect crystals

Figure 1.1: Perfect crystal: periodic arrangement of atoms.

has been rigorously derived from the rHF model for finite molecular systems
(see Section 1.2.2) by means of thermodynamic limit procedure in 36, 24| in
the case of Coulomb interaction. In [36], Dirichlet boundary conditions at
infinity are imposed, while in [24], the authors use the supercell model, that
is, they impose periodic boundary conditions. The same results for Yukawa
interaction can be obtained with similar arguments.

In the limiting model, we suppose that the nuclei are described by a Z3-
periodic function fipe,. The electrons are described by a one-body density
matrix v, which is now an infinite rank operator as there are infinitely many
electrons in the system. The admissible density matrices are the Z3-periodic
density matrices with finite number of electrons and kinetic energy per unit
volume:

Kper = {'y* =7, 0<y <1, Uy=+qUpVk € Z3, Tr (A +1)7) <oo}.
Here, U, denotes the translation operator of vector k:
Urp(z) = p(z + k), Vo e L*(R?), (1.22)

and Tr (-) is the trace per unit volume, which is defined for Z3-periodic locally
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trace class operators A by

Tr (1r, Alr,)

Tr (A) := ngr;o e =Tr (1rAlyp). (1.23)
where 'y, = [-L/2,L/2)3 and T' = [-1/2,1/2) is the unit cell. We refer

the reader to Appendix 2.B for the definition and properties of locally trace
class operators. For a density matrix 7, the trace per unit volume Tr (v)
represents the number of electrons per unit volume, and

——Tr (Av) = (PjvP;) ,

l\.')lr—l
i

Pj = —i0,, being the momentum operator in the direction j, is the kinetic
energy per unit volume. The rHF energy associated with v € Kper is then
given by

) 1 1
Eperm (tpers V) = ST (=A%) + 5Dy (py = pers Py = iper) » (1:24)

where D, (-,-) is the interaction energy per unit volume. It is defined for
any Z3-periodic charge densities f and g by

D (fg)= 3 arcllexlo) (1.25)
s K +m?

Ke(2rZ)
where cx (f) is the K*™® Fourier coefficient of f. When m = 0, we see that
for the Coulomb interaction energy D,, (py — fper; Py — Hper) to be finite,
the system needs to be neutral: fr py = fr fper- In this case, we remove
the term K = 0 in the sum (1.25). While this condition is not necessary for
Yukawa interacting systems, we impose it for consistency. The minimization
problem then reads

inf {%fm(uperm), v € Kper, Tr (7) = /F uper}- (1.26)

Note that in (1.24), we have included, for convenience, the self-interaction
of each nuclei with itself, which was not included in (1.3). This term is a
constant with respect to the electronic minimization problem and it plays
no role in the sequel.

It has been proved in [36, 24| that (1.26) admits a unique minimizer
which is a solution to the periodic rHF equation

Yo = 1 (Hper < EF)
1
Hyer = =52 + Vi (1.27)

—AVper + mQVper = 47 (pyy — Hper) ;
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where € is the Lagrange multiplier corresponding to the charge constraint
and m > 0 is the Yukawa parameter. The proofs in [36, 24| are based on the
formulation of the problem within the Bloch-Floquet theory. We refer the
reader to [133] for a presentation of this theory.

The periodic Schrodinger operator Hpe, is the mean-field Hamiltonian
of the system. The spectral properties of such operators are easy to study
thanks to the Bloch-Floquet transform [133|. In particular, their spectrum
is known to be absolutely continuous and composed of, possibly overlapping,
bands, that is,

g (Hper) = Unen [ana bn] .
From a physical point of view, the band structure is important to describe
the electrical properties of the crystal. In particular, if ex lays in a spectral

gap, then the crystal is an insulator or a semi-conductor. Otherwise, the
crystal is a conductor (see Figure 1.2).

Insulator / Semi-conductor Conductor (metal)

Unoccupied
energies
Unoccupied
energies

Occupied
energies

Occupied
energies

Figure 1.2: Insulating and conducting materials

Most of our results below hold only for insulators (or semi-conductors).
We therefore make the assumption that

Hper has a spectral gap around ep. (1.28)

As we said before, the thermodynamic limit is not yet proved for the HF
model. However, a model similar to (1.26) has been proposed, and proved to
be well posed by Catto, Le Bris and Lions in [36]. In [59], the authors prove
that the minimizers of this HF functional are solutions of a self-consistent
field equation similar to (1.27) and satisfy the no unfilled shell property.

1.4.2 Crystals with local defects

A local defect in a crystal corresponds to perturbing the periodic nuclear
density locally (see Figure 1.3). For example, when the nucleus in the site
k € Z? and of charge z is displaced to k' € R? or replaced by another nucleus
of charge 2/, then the defect is

v=z(xp —xr) or v=(z—2z)x.

35



Figure 1.3: Local perturbation of a perfect crystal.

Mathematically, local defects are modeled by a perturbation v of the nuclear
distribution, with v going to 0 at infinity. In the following we typically con-
sider that the defect v is in L'(R3) N L?(R3). The total nuclear distribution
is then

M= Hper + V.

In our study, the nuclear distribution jiper is such that the background perfect
crystal is an insulator. To describe the electronic structure of the perturbed
system, a variational model in the rHF framework has been introduced and
studied by Cances, Deleurence and Lewin in [24]. The defect is considered as
a quasi-particle embedded in the background crystal, following ideas of [65]
in the study of quantum electrodynamics (QED) models. The defect energy
IV (see (1.20)) is then given as the minimum of the defect energy functional
F (v) which is the difference between the energy of the system where the
electrons are in the test state 7 and the energy of the system where the
electrons are in the state 7y, the ground state of the background perfect
crystal. These two energies are infinite, but their difference can be given a
rigorous meaning in terms of the difference Q) = v — 7, when the latter is in
a suitable functional space. To do so, let us rather consider the free energy
EMF(y) —epTr (y) and define

Fo(@ =" (88 (0 +Q) — erTr (30 + Q) — (&5, (70) — erTr (30)) ”

= Tr (Hper —€r)Q) + Di(p@,v) + %Dm(PQvPQ)- (1.29)

The right hand side of the first line of (1.29) has a priori no mathematical
meaning since both quantities are infinite, but the right hand side of the
second line is well-defined if @) is finite rank and smooth enough for instance.
The interaction energy is defined for any charge densities f, g by

_ FE)g(K)
Dnlfsg) =4 | KP4 dK, (1.30)
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where f(K) = (271)_g Jgs f () 7K %dx is the Fourier transform of f. When
m = 0, then Dy is finite for functions in the Coulomb space

Co(R?*) = {f € S'(R?), Do(f, f) < oc}.

When m > 0, then D,, is finite for functions in H~*(R3).

The "defect state" @ should be so that 7 is an admissible density matrix
(self-adjointness v* = 4 and Pauli principle 0 < v < 1) and has finite defect
energy. The set of admissible defect states is given by

K={Q" =@ -0 <Q<1-%, (-A+1)2Q € Go(L2(RY)),

1 (1.31)
(A +1)2 Q¥ (-A+1)7 € 61 (L*R?) ],

N

where ATT = (1—79)A(1—90) and A=~ = vy Ayp. Here G; denotes the space
of trace class operators and &9 the space of Hilbert-Schmidt operators. Note
that one can associate to any @ in K a density pg which is not necessarily
integrable, but is in Co(R3) N L2(R3) (see [24, Proposition 1]), therefore, its
energy is always finite.

It has been proved in [24] that the minimization problem

I" =inf {F2 (Q), Qe K}

admits a minimizer @), and that all the minimizers share the same density p, .
It has also been proved that the ground state energy I” is the thermodynamic
limit of the supercell model. The ground states of the perturbed crystal are
then given by

7= + Qu.

These ground states are the solutions of the self-consistent field equation
v = 1 (H <e F) + 4

H= —%AJFV (1.32)
~AV +m2V = 47(py — piper — V),

where 0 < § < 1(H =¢€p). The potential V' can be written V' = Vper +
Vi, where V,, = (p, — v) * Yy, is in LS(R3). Therefore V,, is a compact
perturbation of the periodic Hamiltonian He,. It follows that the spectrum
of the mean-field Hamiltonian H is composed of the spectrum of Hper and
possibly isolated eigenvalues of finite multiplicity, which can accumulate at
the edges of the bands (see Figure 1.4). If D,,(v,v) is small enough, then ep
is not an eigenvalue of H and § = 0. This implies that the system admits a
unique ground state.

Under this assumption, the properties of this unique ground state have
been investigated in [33] with the Coulomb interaction. In particular, it is
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Figure 1.4: The spectrum of the mean field operator H in presence of a local
defect.

proved that if the material is anisotropic and ng v # 0, then the density p,
is not integrable at infinity. This behavior is due to the oscillations created
by the Coulomb potential.

One contribution of this thesis is the study of the decay properties of the
density p, and the potential V,, in the case of Yukawa interaction. Thanks
to the short-range character of the Yukawa interaction, these quantities are
proved to decay, when v is compactly supported and small enough, faster
that any polynomial far from the support of v. Denoting by LZ(R3) the
space of square integrable functions with compact support and by L121nif (R3
the Banach space of uniformly square integrable functions LZ .. (R3) =

{f € L*(R?), suprezs | fllpzyny < oo}, we have the following result.

Theorem 1.4.1 (Decay rate of the mean-field potential and density). [92,
Th 2.3, Rem. 2.4] [Th. 3.2.8, Th. 3.A.1 Chapter 3] Assume that the back-
ground crystal is an insulator and that m > 0. Then, for any v € L%(R3)
such that Hl/||lemif and ||v| -1 are small enough, we have for R > 2

< CefC’(log R)? ‘

||VVHH2(R3\CR(V)) + HPVHL2(R3\CR(V)) |VHL2(R3) )

where Cr(v) = {z € R?, d(z,supp(v)) < R}.

We also prove that the potential generated by two defects that are far
enough from one another is close to the sum of the potentials generated by
each defect alone:

Theorem 1.4.2. [92, Prop. 2.6/ [Prop. 3.2.6 Chapter 3] Assume that the
background crystal is an insulator and that m > 0. Then for any 8 > 2 and
any vi,v9 € L2(R3) such that |11 2 . and lvall 2 . are small enough, we
have uni uni

[Vortvs = Vi, HHﬁnif ( (12)) + pvitve — pl’QHLﬁnif (Cry a8y (¥2))

C
< =5 (I, +lalz, ).

Cry(ab)

where R = d(supp(v1 ), supp(r2)) > 0.
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These decay estimates are a necessary input in the study of more com-
plicated systems, such as crystals with rare random defects presented in
Section 1.5.3 below.

1.4.3 Crystals with extended defects

In this section, we discuss the case of extended defects, such as dislocations or
doping in semi-conductors. The effects of such perturbations on the physical
and mechanical properties of the material are more important than those
induced by a local defect. For example, we have seen that the spectrum of
the mean-field Hamiltonian of a locally perturbed crystal has the same band
structure as the background crystal, with possibly some discrete eigenvalues
in the gaps. For extended defects, this picture changes, as we can observe the
narrowing or widening of the bands or even the disappearance of a spectral
gap.

One contribution of this thesis is the study of extended defects in the rHF
framework for systems interacting through Yukawa potential. The results
presented below are contained in [92| and are detailed in Chapter 3.

We consider a perfect crystal characterized by a periodic nuclear density
pper € L2 i (R3) such that the gap assumption (1.28) holds. This crystal
is perturbed by a nuclear distribution v € L2 .. (R3). The total nuclear
distribution is then (see Figure 1.5)

Hnuc = Hper 1 V.

We assume that the perturbed nuclear distribution is close to the one of

W & oo
4 & Q"
’*@5.@.6’

Figure 1.5: Extended perturbation of a perfect crystal

the host perfect crystal locally (the L121nif -norm of v is small enough), but
the perturbation need not be localized in a specific region of space and it
also need not have any spatial invariance. This assumption ensures that the
perturbed crystal is still an insulator.

It is difficult to adopt here a variational approach similar to the one of
local defects, since the energy difference between the perturbed crystal and
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the host crystal can be infinite. We proceed slightly differently. We start by
solving the rHF equation and we compare the energy of suitable test states
~ to the energy of these solutions. The convexity of the rHF energy is thus
important.

In the following theorem, we prove that the rHF equation admits a solu-
tion . Moreover, this solution is unique in a neighborhood of 7.

Theorem 1.4.3 (Existence of a ground state). [92, Th. 2.1] [Th. 3.2.1
Chapter 3] Let m > 0. Then, for any v € L? . (R®) such that ||v|| 2 s
small enough, there is a unique solution -y to the self-consistent equation

y=1(H <¢p)

1
—AV +m?V = 47(py — v — fper)

satisfying

10y = pollz < Clwlz

The proof of Theorem 1.4.3 consists in formulating the problem in terms
of the density p, and using a fixed point technique, in the spirit of [64].

A solution v, constructed in Theorem 1.4.3 is a good candidate for being
the ground state of the electrons in the field of the nuclei arranged according
to pper +v. Following the quasi-particle ideas explained in Section 1.4.2, we
define the free energy difference

F (v =) =" (5L§£+u(7) —epTr (7)) - (5;?§+u(’¥u) —erTr (%)) 7
c=Tr((H —er) (v —W)) + D (p'y - p’yw’/)
1
+ 5 Dm (py = Prs Py =) (1.33)

where D,, has been defined in (1.30). Similarly to the case of local defects,
the right hand side of the first line of (1.33) has a priori no mathematical
meaning, but the right hand side of the second line is well-defined for states
~ such that v — 7, is finite rank and smooth enough, for instance. One can
extend its definition to states in a set similar to IC in (1.31). The minimum
of the energy F7 is attained for v =, =1 (H < ep). Moreover, as H has
a gap around ep, 7 is strictly convex and 7, is its unique minimizer.

If v € LY(R3) N L?(R?) is such that ||v]| 2 . 1s small enough, then the
solution constructed in Theorem 1.4.3 coincides with the ground state of
the perturbed crystal given by the theory of local defects presented in Sec-
tion 1.4.2.

We also prove a thermodynamic limit, namely, the ground state of the
system with the perturbation v confined to a box I'y, of side size L converges,
when the size of the box goes to infinity, to the ground state of the system
with the perturbation v.
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Theorem 1.4.4 (Thermodynamic limit). /92, Th. 2.2/[ Th. 3.2.2 Chapter 3]
Let m > 0. Then, for anyv € L2 .. (R®) such that ||v|| 2 . is small enough,

unif
the sequence (Yuir, )rem\{o} converges to vy, as L — oo.

Thanks to the short-range character of the Yukawa interaction, the mean-
field density p, = p,, — p4, and potential V,, = V —V,,¢; are local in the sense
that their values on a compact set depend mainly on the nuclear distribution
in a neighborhood of this compact set.

Proposition 1.4.5 (The mean-field potential and density depend locally on
v). [92, Prop. 2.5] [Prop. 8.2.5 Chapter 3] Let m > 0. Then, for any 3 > 2
and any v € L? . (R3) such that ||| 2 . Gis small enough and any L > 1,
we have "

C
Vi — VVLHH?mif (B(0,L/48)) T v — PVLHL?mif (B(O0,L/48)) = 7B iz

unif
where vy, = vlp, .

Our results presented in this section concern small perturbations of per-
fect crystals interacting through short-range Yukawa potential. It would be
interesting to remove the condition on the "size" of the perturbation and to
treat the long-range Coulomb interaction. These are future research projects.

1.5 Stochastic systems

In the type of materials we have considered in Section 1.4, the nuclear distri-
bution is close to a reference periodic distribution. Disordered materials such
as unordered alloys and amorphous solids and liquids are more or less far
from this picture. They are mathematically modeled by random distributions
of nuclei.

There are two main classes of models to describe the electronic structure
of such stochastic systems: random linear models where the electrons are
assumed to be non-interacting particles, and nonlinear models where inter-
actions are taken into account. In the former, the study of the properties of
the Hamiltonian of the system and its spectrum could be achieved. In the
latter, the proof of the thermodynamic limit for stochastic systems start-
ing from finite molecular models was obtained, and, in certain cases, the
characterization of the infinite limiting electronic structure was possible.

The contribution of this thesis falls into the second category. It fol-
lows on from [14, 15, 153]. In the framework of the N-body model, Veni-
aminov [153| has considered stochastic systems with short-range interactions
and Blanc and Lewin [15] have considered stochastic systems interacting
through Coulomb forces. They both show the existence of the thermody-
namic limit of the energy. In [14], Blanc, Le Bris and Lions introduce and
study Thomas-Fermi type models for stochastic systems and show that they
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are indeed the thermodynamic limits of the corresponding finite size systems.
Unfortunately, these models are not able to reproduce important physical
properties of stochastic quantum crystals, like the Anderson localization un-
der weak disorder. In collaboration with Cancés and Lewin, we introduce
and study the rHF model for stochastic systems in [29]. We show that this
model is well posed and prove that, in the case of Yukawa interaction, it is
the thermodynamic limit of the rHF supercell model. We present the main
results of this study in Section 1.5.2; the details are provided in Chapter 2.
In Section 1.5.3, we concentrate on a case of physical interest: crystals with
a low concentration of random defects. Throughout Sections 1.5.1- 1.5.3,
we illustrate our presentation with numerical simulations that we performed
on simple one-dimensional systems in a supercell (a representative finite vol-
ume). The context of these simulations is explained in Section 1.5.4 (see also
Chapter 4).

1.5.1 The random linear model

In the random linear model, the electrons are supposed to be non-interacting
particles, apart from the interaction originating from the Pauli principle. The
electronic properties of the system are encoded in the one-body Hamiltonian

H(w) = ~3A+V(w,2),

where V(w,z) is a given effective potential. Such an operator is called a
Random Schrédinger Operator (RSO). RSOs were introduced by Anderson
when studying the transport properties of disordered media. He claimed,
based on physical arguments, that if the disorder is strong enough, then the
electrons get trapped in a localized region of space implying the absence
of conductivity. This phenomenon is known as Anderson localization. This
discovery owed him the 1977 Nobel prize in physics [4, 5|. Since then, the
study of RSOs is a very active research field [72, 80, 34, 148, 125].
In the following, we present some properties of RSOs.

Random Schrddinger operators
We consider here the continuous setting, where H(w) is an operator on
L*(R3) with domain H?(R3). We refer the reader to [81] for an introduction
to discrete Schrodinger operators acting on ¢2(Z3). As we have said before,
H(w) represents the Hamiltonian associated to an electron evolving in the
effective random potential V(w,z). A typical example of disordered medium
considered in this theory is alloys described by the Bernoulli-Anderson model
for which

Viw,e) = 3 qelw)n(e — k), (1.34)

keZ3

where the (gx) are independent and identically distributed (i.i.d.) random
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variables taking values z; or z5 depending on the type of atom in the site k,
and the single site potential 1 is in C2°(R?) for example.

Studying the operator H(w) for every w in the probability space €2 boils
down to the deterministic setting presented in the previous sections. Here,
we rather consider the whole family (H(w)),en and seek to identify almost
sure properties of this family. For this reason, we need to impose a certain
spatial invariance on the probabilistic laws of the variables V' (w,-). In the
Bernoulli-Anderson model (1.34), this spatial invariance is ensured by the
i.i.d. character of the nuclear charges (gi). In general, the assumption RSOs
are asked to satisfy is ergodicity'. To precise the notion of ergodicity, we
consider a probability space (€2, F,P) and a group action 7 of Z? on € which
is measure preserving (P(7;(A)) = P(A) for any A € F) and ergodic (13(A) =
A for all k € Z3 implies P(A) € {0,1}). An important consequence of the
ergodicity of 7 is the ergodic theorem [151], which states that if X € LP(Q),
with 1 < p < oo, then,

. 1
2 oy 1) E{j . X (71(w)) = E(X), (1.35)

almost surely and in L (2). An ergodic operator A of domain D is a mea-
surable family of operators (A(w))weq such that a.s. D C D(A(w)) and that
for any k € Z3, D C Uy(D) and

A(mi(w)) = Uk A(w)UE,  as.,

where we recall that Uy is the translation operator defined in (1.22). As
the Laplacian commutes with the translations of the lattice, then a random
Schrédinger operator is ergodic if and only if the potential V' is stationary
in the sense

V(rg(w),z) = V(w,z+ k), Vk€cZ3 as. and a.e. (1.36)

If V is stationary and satisfies

E ((/F |v|p>r/p> < o0, (1.37)

for p > 2 and r > 3p/(2p — 4), then H(w) is a.s. essentially self-adjoint on
C°(R3) [34].

The spectrum of RSOs

One of the fundamental theorems for ergodic operators, due to Pastur [125],

states that for any self-adjoint ergodic operator A, there exists a closed set
Y C R and a set ; € F with P(Q;) = 1, such that

o(AW)) = %,

We, however, mention the recent work [118] where a particular case of non-ergodic
random Schrédinger operators is studied.
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for all w € ; (see Figure 1.6). The set ¥ is called the almost sure spec-
trum of A. Respective statements hold true for o4.(A(w)), sc(A(w)) and
ool Aw)) [52,91].

10

Figure 1.6: Columns 0 and 1 respectively correspond to the spectra of the
Hamiltonians Hper1 and Hper 2 of two perfect crystals. The other columns
correspond to the spectra of the Hamiltonians H (w) for 21 realizations w of
alloys of these two perfect crystals in representative finite volumes of size
L = 240.

A very important question in the study of the spectrum of RSOs is lo-
calization. From a physical point of view, this means the identification of
energy regimes where there is an absence of diffusion of the electrons in the
disordered material. Mathematically, there are three definitions of localiza-
tion: spectral localization, which is the existence of pure point spectrum,
Anderson localization, which is the existence of pure point spectrum with
exponentially decaying eigenfunctions (see Figure 1.7) and dynamical local-
ization, which corresponds to the non spreading of localized wave packets
under the time evolution e . In dimension d = 1 and under reason-
able assumptions, it was proven that the almost sure spectrum of H(w) is
pure point with exponentially decaying eigenfunctions [61, 34]. In dimen-
sion d > 2 the situation is more delicate. The breakthrough technique is
the Multi-Scale Analysis (MSA) introduced by Frohlich and Spencer [55].
Various variants of MSA have then been used to prove the existence of lo-
calization regimes for a large class of models (see e.g. [56, 58|). For the
Bernoulli-Anderson model (1.34) for example, localization has been proved
in all dimensions [58]. We do not detail this topic here and refer the reader
to the monographs |72, 80, 34, 148, 125].

Density of states
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Figure 1.7: Left: the spectrum of H(w) is represented in green. The y-axis
represents the values of the variance v that quantifies the "spreading" of the
eigenfunctions. Each red dot represents the variance v of the eigenfunction
corresponding to the eigenvalue in the same vertical line. The blue line
indicates the maximal value of v. Right: The eigenfunction corresponding
to the first eigenvalue.

As we said before, in the random linear theory, the electrostatic interaction
between the electrons is neglected and the electrons interact only through
the Pauli exclusion principal, in the sense that two electrons cannot be in the
same quantum state. Therefore, the state of the electrons which minimizes
the energy, is when the electrons fill in the energy levels from the bottom
of the spectrum of H(w) up to the Fermi level ep. Using a thermodynamic
limit procedure and the ergodic theorem (see (1.35)), one can prove that the
state of the electrons in the infinite random media is given by the one-body
density matrix
Y(w) = 1(H(w) < p).

The average number of electrons and the ground state energy per unit volume
(see Figure 1.8) are then respectively given by

E(V)=E</pr>

Tr (Hy) = —%E (Ay) +E (/F va> - (1.38)

It is easily obtained using the ergodic theorem that for an ergodic operator
A, the average trace per unit volume Tr (A) defined in (1.23) is actually equal
to Tr (A) = E(Tr (1rAlp)). We recall that ep is the Lagrange multiplier
corresponding to the constraint on the average number of electrons per unit
volume. Note that both the average number of electrons and the ground state
energy per unit volume are given by the average trace per unit volume of
two particular functions of the Hamiltonian H (w), namely x — 1(z < 0) and
x +— —x_. The trace per unit volume of a general (sufficiently smooth and

and
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Figure 1.8: The convergence of the average energy per unit volume in the
thermodynamic limit for the linear model. The error bars correspond to 95%
confidence intervals computed with Ny = 21 realizations.

decaying) function ¢ of the Hamiltonian H (w) actually depends on the func—
tion of E — Tr (1(H < E)) only. Indeed, using that ¢(z) = [*_ ¢/

and denoting the spectral projection of H by Py(w) = 1(H ( ) < )\) a formal
calculation gives

Tr (o (// dEdPA> T <//+Oodpw( )dE>
~1 ([0~ PopaE) = [ 1 (P o(B) dE:

where we have used an integration by parts in the last step. The function
N:Ew— Tr (1(H < E)) is called the Integrated Density Of State (IDOS) of
H(w). As N is non-decreasing, its derivative n is a positive measure called
the Density Of States (DOS) of H(w). Loosely speaking, the density of
states n(I) measures the number of electrons per unit volume that can be
put in the energy interval I. The IDOS of H(w) has been proved to be the
thermodynamic limit of the IDOS Ny, of the Hamiltonian Hp(w) = —%AL +
V(w, ) of the system confined to the box I'y, of side size L with Dirichlet,
Neumann or periodic boundary conditions. The spectrum of Hp(w) is given
by a bounded below sequence of real numbers (A, ,)nen going to infinity as
n — oo. In this case, Ny, is the counting function

1
NL(E) = T, |#{>\L ny ALn < B} = WTT (lm,<p) = m/r Pl <p
L

We mention here the main two methods for proving this thermodynamic
limit. The proof of Pastur [124] is based on the Laplace transform of the
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IDOS and the Feynman-Kac representation of the Schrodinger semi-group
et The latter method is called Neumann-Dirichlet bracketing, which
relies on the fact that Ag < AZL) in the sense of quadratic forms, where
Ag and Ag are the realizations of the Laplacian on I';, with Neumann
and Dirichlet boundary conditions respectively, and sub- and superadditive
versions of the ergodic theorem. Klopp has proposed in [89] a proof where
periodic boundary conditions are imposed.

The DOS characterizes the almost sure spectrum of H(w). Indeed, the
latter coincides with the support of n, or equivalently, the points of growth
of the IDOS, and the energies F such that n({E}) # 0 correspond to the
almost sure eigenvalues of H (w).

The study of the properties of the DOS and the IDOS is an interesting
mathematical question. It is also an important input in the study of the
localization properties of the Hamiltonian. On the one hand, various results
of continuity and differentiability of the IDOS have been proved for several
types of models. We also mention the recent work of Bourgain and Klein [20]
proving the log-Hélder continuity of the IDOS as soon as the potential V' is
bounded. On the other hand, the asymptotic behavior of the IDOS at the
bottom of the spectrum and at the band edges, called Lifshitz tails, has been
thoroughly studied. For a recent review on these subjects, see [84].

1.5.2 The random reduced Hartree-Fock model

For a proper physical description of the electronic structure of random ma-
terials, the electrostatic interactions between the electrons need to be taken
into account. In [29] (see also [28] and Chapter 2 of this thesis), we are
interested in the definition of a mean-field model for electrons in random
materials. We first set up the necessary functional setting for the study of a
large class of mean-field models of HF or KS types. We then concentrate on
the simple case of the rHF model.

We consider here "ergodic" materials, in the same sense as in the random
linear model presented in Section 1.5.1. The nuclear distribution u satisfies
the stationary condition:

w(rp(w), z) = plw,z + k), VkeZ? as. and ae..

The state of the electrons is described by an ergodic one-body density matrix,
that is, an ergodic self-adjoint operator v(w) : L?(R3) — L?(R3) satisfying
the Pauli principle: 0 < (w) < 1 almost surely. In particular, the kernel
of 7 is stationary in the sense v(7;(w),x,y) = y(w,z + k,y + k). As in the
linear model, the average trace per unit volume Tr (v) is interpreted as the
average number of electrons per unit volume and

1
—§Tr (A5) : (PjvP;) ,

er—l
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represents the average kinetic energy per unit volume of v, P; being the mo-
mentum operator in the direction j. The set of admissible density matrices
in the ergodic setting is then the set of ergodic density matrices having finite
average number of particles and kinetic energy per unit volume:

K = {yergodic, v* =7, 0 <y <las, Tr ((1 - A)y) <oo}.

The set IC is a weak-x closed convex subset of L>°(2, B), the set of uniformly
bounded random operators. We have proved that admissible density matrices
v € K satisfy inequalities similar to the Hoffmann-Ostenhof [73| and Lieb-
Thirring inequalities [115, 116] for finite systems (see (1.16) and (1.17)).
These inequalities are very important estimates and will be very useful in
the sequel.

Theorem 1.5.1 (Hoffmann-Ostenhof and Lieb-Thirring inequalities for er-
godic operators). [29, Prop. 2.6, Prop. 2.8] [Prop. 2.2.9, Prop 2.2.11 Chap-
ter 2] There exists K > 0 such that for any v € K, we have

E </F |v\/m|2> <Tr (-Av)

KE (/Fpi/?’) <Tr (—A7).

Unlike the random linear model, in mean-field models, the effective po-
tential V' the electrons are subjected to is an output of the problem. In the
rHF model, it is given by solving the (regularized) Poisson equation

and

—AV +m?V = 4xf, (1.39)

where f is the total charge density and A is the Laplace operator with respect
to the x variable. In the models we consider here, the total charge density
is the stationary function f = p, — u, where «y is the ground state density
matrix of the system. For the Yukawa interaction (m > 0), (1.39) admits a
unique solution

Vi) = [ Yulo = 9) () do

For the Coulomb interaction (m = 0), the situation is more complicated. For
a start, we have seen that in the periodic setting, a necessary and sufficient
condition for (1.39) to have a periodic solution is the neutrality condition
fF f = 0. In the stationary setting, the condition E(fl‘ f) = 0 is necessary
but, in general, not sufficient to find a stationary solution V. In Section 2.3.1,
Chapter 2, we show that a necessary and sufficient condition for (1.39) to
have a stationary solution V' satisfying E( [, V?2) < cois that f is in the range
of the “stationary Laplacian” which is a particular self-adjoint extension of
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the Laplace operator with respect to the space variable z on L2(Q x Q) with
“stationary boundary conditions”.

To circumvent this difficulty, we adopt a variational approach and define
the Coulomb interaction energy as the limit of the Yukawa interaction energy,
when the Yukawa parameter m goes to 0. For m > 0, the average Yukawa
interaction energy per unit volume for a stationary charge density f is given
by

D, (f,f):=E (/F Vi(z)f(z) dm)
e ([ [ reate - s dody

—E (/F Wi 5 £(0) dy) |

where W, is the inverse Fourier transform of v/4m(m? + |K|?)~Y/2. Tt is
finite for any f in the space of locally integrable stationary functions with
locally finite Yukawa energy:

Dy := {f stationary, f € LY, Lip (R?)), Wi, + f € L*(Q, L (R)}

loc

Note that the space Dy does not depend on the parameter m. By the
decay properties of W,,, one can show that the stationary functions in
L?(9, L?O/CS(]R?’)) are in Dy-.

As m— D, (f, f) is a non-increasing function, it is therefore natural to

define, for any f in
Do={feDy| lim D, (f.f) < oo},
m—0
the average Coulomb interaction energy per unit volume to be
m—0

The space D¢ is called the space of locally integrable stationary functions
with locally finite Coulomb energy. We retrieve the neutrality condition we
mentioned before, as if E( fr f) #0, then f ¢ Dc. The space Do contains,

in particular, the stationary functions in L?(€, L?O/E(R?’)) whose charge and
dipolar momentum per unit cell are almost surely equal to zero [29, Prop.
3.3] [Prop. 2.3.4 Chapter 2|.

In mean-field models, the energy is the sum of the kinetic energy, the
(Coulomb or Yukawa) interaction energy and possibly other quantum terms
such as exchange and/or correlation corrections. We concentrate on the rHF
model, where these corrections are neglected. The average energy per unit

volume then reads

1
En (1,7) = 5 Tx (=A%) + 5 Doy = 1, py = 1) (1.40)

49



The ground state energy with Coulomb interaction is given by

I () = inf {£5" (1,7), v € K, py—p € Dc}.

For the Yukawa interaction (m > 0), it is given by

L (n) = inf {éfffF(M,v), YEK, py—p €Dy, I () =E </F M) } :

(1.41)
Note that, as in the periodic setting, the charge neutrality condition Tr (y) =
E ( Jr u) is not necessary in the Yukawa case, but we impose it for consistency.
In the following theorem we prove that the system admits a ground state
as soon as the minimization set is non empty. This is indeed the case for
the Yukawa case whenever p € Dy. For the Coulomb case we give in [29,
Lemma 4.1] sufficient conditions for the minimization set not to be empty.

Theorem 1.5.2 (Existence of ergodic ground states). [29, Th. 4.2][Th. 2.4.2
Chapter 2] If {y € K, p, — n € D¢} is non empty, then I (1) admits min-
tmizers and all the minimizers share the same density.

If {’y €K, py—peDy, Tr (y) =E (fF u)} is non empty, then, for any
m > 0, 'MW (u) admits minimizers and all the minimizers share the same
density.

The main ingredient of the proof of Theorem 1.5.2 is the weak-x com-
pactness of the set K and the strict convexity of the functional EF (1, )
with respect to the electronic density p-.

For (short-range) Yukawa interactions, we prove in addition that the
rHF ground state density matrix satisfies a self-consistent equation similar
to (1.13), and that the model is the thermodynamic limit of the supercell
model.

Theorem 1.5.3 (Properties of the Yukawa ground state). [29, Lemma 4.4,
Prop. 4.5, Cor. 4.6, Th. 5.2 | [Lemma 2.4.4, Prop. 2.4.5, Cor. 2.4.6,
Th. 2.5.2 Chapter 2 | Let m > 0, p € Dy and v be a minimizer of (1.41).
Under reasonable integrability assumptions on p, we have the following re-
sults:

1. From Yukawa to Coulomb: we have

L () — I (o).

2. Mean-field Hamiltonian: the random Schrédinger operator
1
H = —§A+V (1.42)

where V- =Y, * (py — ), is ergodic and almost surely essentially self-
adjoint on C°(R3).
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3. Self-consistent field equation: There exists eg such that any minimizer
v of (1.41) is of the form

vy=1(H <ep)+0,
where 0 is an ergodic self-adjoint operator satisfying 0 < 6 < 1(H =
6F).

4. Uniqueness of the minimizer: if u € L>(Q x R3) then p,,V € L®(£2 x
R3), 6 =0 and
Y= 1(H < e’:‘F)
is the unique minimizer of (1.41).

5. Thermodynamic limit: we have

L (7))
L () — erE (/F,M) = Jim —=——,

L—o0

where I;EEFF (ur) is the ground state energy of the system confined to

a box of size L with periodic boundary conditions, and with the con-
straint that the chemical potential of the electrons is equal to ep. (See
Figure 1.9)

21

2.05
x
2 b
x
1.95
19
1.85

18

*
Hkxox:
1.75 FEKKAAKKAK * * * * *

17

I I I I I I
0 20 40 60 80 100 120 140

Figure 1.9: The convergence of the average energy per unit volume in the
thermodynamic limit for the rHF model. The error bars correspond to 95%
confidence intervals computed with Ny = 21 realizations.

The first assertion essentially follows from our definition of the Coulomb
energy D, as the limit of D,,, as m — 0 and the weak-* compactness of the
set JC. The second assertion is a consequence of the integrability properties

o1



of u, thus those of p, and V, and of the self-adjointness criterion for random
Schrodinger operators (see (1.37) and the remark below). In view of the
third assertion, we see that studying the spectral properties of the mean-
field Hamiltonian H with the techniques presented in Section 1.5.1 would
allow to understand the localization and transport properties of the inter-
acting stochastic systems (see Figure 1.10). These questions have not been
addressed in the present work. Using the result of Bourgain and Klein [20]
mentioned before about the log-Holder continuity of the IDOS of the RSOs
with bounded potentials, we prove that the minimizer of our problem is
unique as soon as the nuclear density is uniformly bounded (Assertion 4 of
Theorem 1.5.3).
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Figure 1.10: The spectrum of the mean-field Hamiltonian H(w) is repre-
sented in green. The y-axis represents the values of the variance v that
quantify the "spreading" of the eigenfunctions. Each red dot represents the
variance v of the eigenfunction corresponding to the eigenvalue in the same
vertical line. The blue line indicates the maximal value of v.

To extend these results to the Coulomb case, we would need to prove some
screening effects and rigorously define the Coulomb potential in appropriate
functional spaces.

1.5.3 Crystals with low concentration of random defects

We are interested in this section in materials with a low concentration of
defects. A typical example of such materials are doped semi-conductors. For
example, in standard applications, 1 cm? of silicon, containing approximately
10?2 silicon atoms, is doped with 10" to 10'® atoms of phosphorus or boron.
If we model this (infinite) material by the Bernoulli-Anderson model, then
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the total nuclear density is given by

M(wa CC) - Z Xsilicon(wa T — k) + Z Qk(w)(Xdopant - Xsilicon)(x - kﬁ),
keZ3 keZ3

where g, are i.i.d. Bernoulli variables of parameter 107% < p < 1074, that is
P(gr =1) =p and P(gx =0) =1 —p.

To compute the macroscopic properties of random materials, one needs
to compute expectancies of random variables. For example, for the average
energy per unit volume, one can use (1.38) or (1.40). But calculating the
expectation, with a Monte-Carlo method for example, is very costly as one
needs to evaluate the quantity of interest for a large number of realizations.

In random materials with low concentrations of defects, one can hope
that the computation of the macroscopic quantities can be less costly, given
the fact that these materials are perturbations of the host perfect crystal.

In the context of the random linear model presented in Section 1.5.1, this
problem has been studied by Kirsch and Hempel [70] and by Klopp [87, 88].
In the rHF presented in Section 1.5.2; this problem is addressed in [92| and
the results are reported on in Chapter 3.

We also mention that similar models have been studied in the context of
stochastic homogenization [1, 2, 3, 119].

Our quantity of interest in the following will be the density of states n,
as it allows for the calculation of macroscopic quantities. We recall that for
any sufficiently decaying and smooth function ¢ on R

v (p(H)) = / () dn(z).

R

We also recall that the spectral shift function {(A;, Ag) for the pair of opera-
tors A; and Az (see [156]), when it exists, is the unique tempered distribution
in §'(R) satisfying, for any ¢ € S(R),

Tr (p(A1) — p(A2)) = (£(A1, A2), @) s m).sm) = —(E(A1, A2)', ©) s (). S(R)-
In [87], Klopp considers a random Schrédinger operator
1

where V) is a periodic potential representing the host crystal and V), is the
potential created by the random defects. The latter is of the form

Vo(w,z) = > qe(w)n(z — k)
keZ3
where ¢ are i.i.d. Bernoulli variables of parameter p and the single site

potential 7 is an exponentially decaying function. For K C Z3, let Hy be
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the Hamiltonian of the system with defects in the sites of K:

1
HK=—§A+V0+Z77(90—I<:).
kekK

Then the density of states n, of H, admits an asymptotic expansion in
powers of p to any order, that is, for any J € N\ {0},

J
np=mno+ »_U;p +0(p’M), (1.43)

j=1

where ng is the density of states of the unperturbed Hamiltonian Hy =
—%A + Vp and for any j € N\ {0}, the tempered distribution 9 is given by

79]:—% > (-)IMWlg(Hg, Hy)'

kcz3, K/'CK
|K|=j,0e K
In particular, the first order term ¢y = —§(H {0},H0)’ is a function of the
spectral shift function between the unperturbed Hamiltonian and the Hamil-
tonian of the system with only one defect. The notation O(p’/*!) means that
there exists a semi-norm |-| ; in S(R) such that for any ¢ € S(R)

(O™, ¢)s1.s| < Cylely-

We extend this result to the rHF framework with the short-range Yukawa
interaction in [92| and in Chapter 3. The proof of our result (Theorem 1.5.4
below) follows essentially the proof of [87, Theorem 1.1|. The main difference
is that we deal here with self-consistent potentials, while in [87] the single
site potential is an input of the problem and is assumed to be exponentially
decaying. The short-range character is needed in our analysis for the poten-
tial created by each defect to decay fast enough. We assume that the nuclear
charge distribution is given by

pip(w, ) = prper(w, ) + Z @k (w)x(z — k),
kez3

where, as in the linear case, the ¢ are i.i.d. Bernoulli variables of parameter
p and y € L2(R3) is such that supp(x) C I'. Treating nonlinear potentials is
done at the price of assuming that the host crystal, characterized by fiper, is
an insulator and that the defect  is small enough in the L?-norm, so that the
conclusions of Theorems 1.4.1 and 1.4.2 hold true. We introduce the rHF
mean-field Hamiltonian H,, corresponding to the system with the nuclear
distribution p, defined by the stochastic THF theory of the previous section
(see (1.42)) and for K C Z3, we introduce the rHF mean-field Hamiltonian
Hpy corresponding to the nuclear charge

MK:Mper+ZX( -

keK
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defined by the rHF theory of local defects of Section 1.4.2 (see (1.32)). We
then have the following theorem:

Theorem 1.5.4 (Density of states expansion). [92, Th. 2.7 [Th. 3.2.7
Chap. 3] For any x € L%(R®) such that supp(x) C ' and ||x||;2 is small
enough, the density of states n, of pr admits an asymptotic erpansion in
powers of p to the order 2, that is,

fip = o + U1p + 92p* + O(p%), (1.44)

where ng is the density of states of the unperturbed Hamiltonian ffo and for
J € {1,2}, the tempered distribution 9; is given by

Ji=— S (), Hy)'

J kcz3, K/'CK

|K|=7, 06 K
The extension of this theorem to higher orders J > 3 should follow the
same lines and techniques as the ones used to prove (1.44). A challenging
task however, which is still an open problem, is to prove a similar result

assuming Coulomb interactions.
From the computational point of view, (1.43) and (1.44) show that when
p is small, then one can accurately approximate the average of any macro-
scopic quantity using only a (relatively) small number of electronic structure
calculations. For example, if we restrict to the first order, then one only
needs to do two calculations, one for the perfect crystal and one for the crys-
tal with a single defect, to obtain an accuracy of order p? (see Figure 1.11).

1.5.4 Numerical simulation

In this section, we present a summary of the numerical simulation car-
ried out in this thesis and detailed in Chapter 4. We have simulated 1-
dimensional stochastic systems within the random linear model (presented
in Section 1.5.1) and the random rHF model with the Yukawa interaction
(presented in Section 1.5.2). The purpose of these simulations is twofold:
first we illustrate some of the theoretical results discussed in the previous
sections. Second we try to understand phenomena that are not covered
by the theoretical study. The numerical methods we use are the supercell
method (finite representative volume with periodic boundary conditions)
with planewave discretization, Optimal Damping Algorithm (ODA), and
Monte-Carlo method.

We simulate random alloys resulting from the combination of two perfect
crystals. We suppose that at each site k € Z, there is a probability p to see
the first kind of crystals and a probability 1 — p to see the second type of
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Figure 1.11: The average of the L'((—00, Ecyt])-norm of the IDOS N, as a
function of p in the rHF model.

crystals, independently of what is happening in the other sites. This means
that in the linear model, the mean-field potential is of the form

=Y a@Vilz — k) + (1 = qe(w)Va(e — k), (1.45)
kEZ

and that in the rHF model, the nuclear density is of the form

=D avwm(z — k) + (1 = qu(w))p2(z — k),

keZ

where (g;) are ii.d. Bernoulli random variables of parameter p, and V;
(respectively p;), for i € {1,2}, is the single site potential (respectively
nuclear density) corresponding to the crystal i. We suppose that V; and pu;,
for i € {1,2}, are supported in the unit cell I' = [0,1). In our simulations,
we take V; and p;, for i € {0,1}, to be defined on I" by

Vi(x) = sin (4rz) —sin (27z), Va(z) = 5sin(27x),

_ 1 (.%' - %)2 d -1 4(2
i (z) = o exp “T00n and pao(x) =1 — cos(2mz).

A typical V(w,x) and p(w,z) are represented in Figures 1.12 and 1.13.
In both cases, the Hamiltonian of the system is of the form

1 d?
H(w) = “5qz t V(w,z),
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Figure 1.13: A realization of the nuclear density .

where the potential V is a stationary function. For each realization w in the
probability space 2, we simulate the system using the supercell model, which
consists in restricting the system to the box I'r, = [0, L), where L € N\ {0},
with periodic boundary conditions. The corresponding Hamiltonian is then

where V7, is the LZ-periodic potential which is equal to V(w,-) on I'z. For
a number of electrons per unit volume N, the ground state of the system is

Hyp =

Tagz TV
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given by
NeL
v =Y lura)(ural, (1.46)
n=1

where (u L.n)1<n<N.L is an orthonormal family of eigenvectors corresponding
to the smallest eigenvalues A, 1 <--- < Ap n.p of Hp.

To compute the eigenmodes of Hy,, we discretize the space Héer(R) using
a planewave basis. The resulting linear system is solved using the C++
linear algebra library LAPACK.

In the rHF framework with Yukawa interaction, the potential V7, is given
self-consistently by

Vi = Yin * (pyy, — iz, (1.47)

where py is the LZ-periodic function which is equal to the nuclear distri-
bution p(w,:) on I'z. We use the ODA to solve the self-consistent equa-
tion (4.7)-(4.8).

Once we obtain the ground state of the system, we are able to calculate
quantities of interest to our study.

We first monitor the convergence of the energy per unit volume and the
density of states in the thermodynamic limit, that is, when L — oo. For
the linear model, these convergences have been proved in [89, Th. 5.1|. For
the rHF model, the convergence of the energy per unit volume is given by
theorem 1.5.3.

We next study the localization properties of the Hamiltonian. As the
spectrum of Hp is always discrete, we characterize it by observing "how
much" the corresponding eigenfunctions are localized. We use a variance-
based criterion. In the linear model, there is localization at all energies when
there is disorder (p € (0,1)) and absence of localization in perfect crystals
(p € {0,1}). In the rHF model, we are not aware of any theoretical results
on the localization properties of the mean-field Hamiltonian. Our numerical
results do not allow us to conclude whether there is localization or not.

Finally, we simulate crystals with low concentration of random defects
and study the behavior of the integrated density of states as a function of
the Bernoulli parameter p in the limit p — 0.

The numerical results of our simulations are presented in Chapter 4.
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Chapter 2

Mean-field models for
disordered crystals

In this chapter, we detail and develop the theory exposed in an article [29],
written with Eric Cancés and Mathieu Lewin, which appeared in Journal
de mathématiques pures et appliquées. We set up a functional setting for
mean-field electronic structure models of Hartree-Fock or Kohn-Sham types
for disordered quantum systems. In the first part, we establish important
properties of stochastic fermionic one-body density matrices, assuming that
they are stationary under the ergodic action of a translation group. In par-
ticular, we prove the Hoffmann-Ostenhof and the Lieb-Thirring inequalities
for ergodic density matrices, and deduce some weak compactness properties
of the set of such matrices. We also discuss the representability problem
for the associated one-particle density. In the second part, we investigate
the problem of solving Poisson’s equation for a given stationary charge dis-
tribution, using the Yukawa potential to appropriately define the Coulomb
self-interaction in the limit when the Yukawa parameter goes to zero. Fi-
nally, in the last part of the chapter, we use these tools to study a specific
mean-field model (reduced Hartree-Fock, rHF) for a disordered crystal where
the nuclei are classical particles whose positions and charges are random. We
prove the existence of a minimizer of the energy per unit volume and the
uniqueness of the ground state density. For (short-range) Yukawa interac-
tions, we prove in addition that the rHF ground state density matrix satisfies
a self-consistent equation, and that our model is the thermodynamic limit
of the supercell model.
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2.1 Introduction

The modeling and simulation of the electronic structure of crystals is one
of the main challenges in solid state physics and materials science. Indeed,
a crystal contains an extremely large number (in fact an infinite number in
mathematical models) of quantum particles interacting through long-range
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Coulomb forces. This complicates dramatically the mathematical analysis
of such systems.

Finite size molecular systems containing no heavy atoms can be accu-
rately described by the N-body Schrédinger equation, or its relativistic cor-
rections. Because of its very high complexity, this equation is often approx-
imated by nonlinear models which are more amenable to numerical simula-
tions. On the other hand, no such reference model is available for infinite
molecular systems such as crystals. For this reason, in solid state physics and
materials science, the electronic structure of crystals is often described by
linear empirical models on the one hand, and mean-field models of Hartree-
Fock or Kohn-Sham types on the other hand.

In linear empirical models, the electrons in the crystal are seen as non-
interacting particles in an effective potential Vg, so that their behavior is
completely characterized by the effective Hamiltonian

1
H = _§A+V:3ff,

a self-adjoint operator on L?(R%). Here d is the space dimension which is
d = 3 for usual crystals. The cases d = 1 and d = 2 are also of interest since
linear polymers and crystalline surfaces behave, in some respects, as one- and
two-dimensional systems, respectively. Throughout this study, we adopt the
system of atomic units in which A = 1, me = 1, e = 1 and 4negg = 1,
where h is the reduced Planck constant, m,. the mass of the electron, e the
elementary charge, and g the dielectric permittivity of the vacuum. For the
sake of simplicity, we work with spinless electrons, but our arguments can
be straightforwardly extended to models with spin.

When the system under study is a perfect crystal, the effective potential
Vesr is an R-periodic function Vjer, where R is a discrete lattice of ]Rd, and
the effective Hamiltonian is then a periodic Schrédinger operator on L?(R%),
H = Hper = —%A + Vper- The spectral properties of such operators are
well-known [133]. Under some appropriate integrability conditions on Vjer,
it follows from Bloch theory that the spectrum of Hpe, is purely absolutely
continuous and composed of a countable number of (possibly overlapping)
bands.

It is possible to describe local defects in such effective linear models.
Displacing or changing the charge of a finite number of nuclei corresponds
to adding a potential W to V,e. Because such perturbations are local,
the potential W decays at infinity and therefore the effective Hamiltonian
Hictoct = —%A + Vper + W has the same essential spectrum as the unper-
turbed Hamiltonian Hpe,. On the other hand, Hgefeet may possess discrete
eigenvalues below its essential spectrum, or lying in spectral gaps. They
correspond to bound states of electrons in the presence of the local defects.

Doped semiconductors and alloys are examples of disordered crystals,
which are perturbed in a non-local fashion. Such systems can be adequately
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modeled by random Schrodinger operators [34, 148]. One famous example
is the continuous Anderson model

1 .
Hy=—3A+V, with VN(JT)ZI;QQK(W)X(x_k)’

where, typically, y € C2°(R?) and the g;’s are i.i.d. random variables. Here,
only the charges are changed but it is possible to also account for stochastic
displacements of the atoms. The study of the spectral properties of ergodic
Schrodinger operators is a very active research topic (see e.g. 72| and the
references therein).

In linear empirical models, the interactions between electrons are ne-
glected (apart from the implicit interaction originating from the Pauli princi-
ple preventing two electrons from being in the same quantum state). Taking
these interactions into account is however a necessity for a proper physical
description of these systems. One main difficulty is then that the Coulomb
interaction is long-range and screening becomes extremely important to ex-
plain the macroscopic stability of such systems. Understanding screening
effects in a precise manner is a difficult mathematical question.

As already mentioned above, there is no well-defined N-body Schrodinger
equation for crystals. The only available way to rigorously derive models for
interacting electrons in crystals is to use a thermodynamic limit procedure.
The idea is to confine the system to a box, with suitable boundary con-
ditions, and to study the limit when the size of the box grows to infinity.
For stochastic many-body systems based on Schrédinger’s equation, it is
sometimes possible to show that the limit exists. In [153], Veniaminov has
first considered a many-body quantum system with short range interactions.
Shortly after, the existence of the limit for a crystal made of quantum elec-
trons and stochastic nuclei interacting through Coulomb forces was shown
in [15], by Blanc and Lewin. In these two works dealing with the true
many-body Schrodinger equation, the value of the thermodynamic limit is
not known. For Thomas-Fermi and Thomas-Fermi-von Weizsécker theories,
Blanc, Le Bris and Lions were able to identify the thermodynamic limit and
to study its properties [14]. Unfortunately, these models are not able to re-
produce important physical properties of stochastic quantum crystals, like
the Anderson localization under weak disorder.

The purpose of the present work is to initiate the study of mean-field
models for an infinite interacting disordered quantum crystal. These models
are not as precise as the many-body Schrédinger equation, but they are
still much richer than Thomas-Fermi type theories. In particular, they seem
adequate for the description of Anderson localization in infinite interacting
systems.

More specifically, we consider a random nuclear charge p(w,z) > 0.
For simplicity we do not consider point-like charges, and we assume that
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plw,-) € LL (R9) almost surely. Also we are interested in describing random
perturbations which have some space invariance, and we make the assump-
tion that they are the same in average when the system is translated by
any vector of the underlying periodic lattice R. We assume that the group
R acts on the probability space in an ergodic fashion and we always make
the assumption that p is stationary, which means u(7;(w), ) = p(w,z + k),
where 7 = (7% )rer is the ergodic group action on the probability space. A
typical example is given by a lattice R with one nucleus per unit cell, whose
charge and position are perturbed by i.i.d. random variables,

pw, ) = > qrw) x(z =k —m(w)).

kER

The state of the electrons in the crystal is modelled by a one-particle density
matriz [112], that is, a random family of operators v(w) : L?(RY) — L?(R9)
such that 0 < y(w) < 1 almost surely. It is also assumed that ~ is stationary
in the sense that its kernel satisfies v(7x(w), z,y) = y(w,x + k,y + k) for all
k € R. These concepts will be explained later in Section 2.2.1.

In mean-field models, the energy of the system is a functional of the nu-
clear charge p and of the electronic density matrix . In the random setting,
it is the sum of the kinetic energy per unit volume (a function of ), of the
potential energy per unit volume (a function of v and p) and, possibly, of
other quantum correction terms such as exchange and/or correlation contri-
butions. In order to rigorously define and study the properties of models
of this type, we need to introduce some tools of functional analysis, which
is the purpose of Sections 2.2 and 2.3. We believe that these tools will be
useful for future studies of interacting random quantum systems.

In Section 2.2, we start by defining the average number of particles and
the kinetic energy per unit volume for ergodic density matrices and we show
useful inequalities. In particular we derive Hoffmann-Ostenhof [73| and Lieb-
Thirring inequalities [115, 116] for ergodic density matrices, which are very
important estimates that we will use several times throughout this study.
Loosely speaking, they can respectively be stated as follows:

Average kinetic energy per unit vol. of v > E </ |V, /py]2>
Q

and

d+2
Average kinetic energy per unit vol. of v > KE (/ Pyl > ,
Q

where @ is the unit cell, p, is the electronic density associated with the state
~v and K is a constant independent of ~.
In Section 2.3, we discuss Poisson’s equation

—AV =dmp (2.1)
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for stationary functions p(w, x), where A is the Laplace operator with respect
to the z-variable, and we explain that the situation is much more complicated
than in the periodic case. In particular, the neutrality condition E( [ 0 p)=0
on the charge density appearing on the right side of (2.1) is necessary but in
general not sufficient to find a stationary solution V. When E( [ 0 p?) <
and E( [ 0 p) = 0, it is possible to give a necessary and sufficient condition for
the existence of a stationary solution V' to (2.1) such that E(fQ V%) < oo
In words, p should be in the range of the “stationary Laplacian” which is
a particular self-adjoint extension of —A on L?(©2 x Q) with “stationary
boundary conditions”. See Section 2.3.1 for details.

Understanding Poisson’s equation (2.1) for general stochastic charge den-
sities p is an important and interesting problem in itself. In order to define
the associated Coulomb energy per unit volume, we adopt here a simple
strategy and take the limit m — 0 of the Yukawa energy. This means that
we consider the regularized equation

—AV,, + m?Vy, = 4dmp

and we define the Coulomb energy as the limit of E < fQ Vmp> when m — 0.

We then give in Section 2.3 several properties of this energy.

In Section 2.4, we use the mathematical framework introduced in the pre-
vious sections to study the simplest mean-field theory for electrons, namely,
the so-called reduced Hartree-Fock (rHF) model. It is obtained from the gen-
eralized Hartree-Fock model [113, 8] by removing the exchange term [146].
Alternatively, it can be seen as an extended Kohn-Sham model [41] with
no exchange-correlation. In the random setting considered here, the corre-
sponding energy is the sum of the kinetic energy per unit volume of ~ and
of the potential energy per unit volume of v and p.

We prove the existence of a minimizer « of this energy and the uniqueness
of the ground state density p,. In the Yukawa case m > 0, we also show
that the minimizers solve a self-consistent equation of the form

Y= 1(700,61:‘) (Hm) + 6,
Hy = —3A+ Vi,
—AV,, +m?V,, = 47r(p7 — ,u),

where e is the Fermi level, and Ran(d) C 1y..}(Hy). Under the additional
assumption that p € L>®(Q x R%), the operator ¢ is a.s. equal to zero, and
the ground state density matrix is unique.

The mean-field operator H,, is a random Schrédinger operator describing
the collective behavior of the electrons in the system. Studying its spectral
properties would allow to understand localization and transport properties
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in the interacting stochastic crystal. These are interesting and important
questions which we hope to address in the near future.

In Section 2.5, we finally prove that, in the Yukawa case, our model
is actually the thermodynamic limit of the supercell reduced Hartree-Fock
theory (the system is confined to a box with periodic boundary conditions).
This justifies our theory with Yukawa interactions. For Coulomb forces, our
proof does not apply because of some missing screening estimates. We make
more comments about this later in Section 2.5.

Let us end this introduction by mentioning that our theory is rather
general and it actually works for any reasonable interaction potential which
decays fast enough at infinity. We concentrate on the Yukawa interaction
because of the limit m — 0 which corresponds to the more physical Coulomb
case and which we study as well here. Note that we consider here the action
of a discrete group on {2 because we have in mind the case of a randomly
perturbed crystal. Our approach can also be applied to the case when the
group acting on € is R? (amorphous material), using the formalism of [123].

2.2 Electronic states in disordered crystals

In mean-field models (such as Hartree-Fock or Kohn-Sham), the state of
the electrons is described by a self-adjoint operator + acting on L?(R%),
satisfying 0 < v < 1 in the sense of quadratic forms, and such that Tr ()
is the total number of electrons in the system [112]. In (infinite) crystals,
we always have Tr () = +o00. Such an operator v is called a (one-particle)
density matriz. The purpose of this section is to collect the main properties
of electronic states in a class of random media, satisfying an appropriate
invariance property called stationarity. Some of these properties are classical,
while others seem to be completely new. We recall in Appendix 2.B some
properties of finite density matrices.

2.2.1 Basic definitions and properties

Throughout this chapter, d will denote the space dimension. We will later
focus on the cases where d € {1, 2,3}, but we keep d arbitrary in this section.
We restrict ourselves to the cubic lattice group R = Z? to simplify the
notation; general discrete subgroups R can be tackled similarly without any
additional difficulty. We consider a probability space (€2, F,P) and an ergodic
group action 7 of Z¢ on Q. We recall that 7 is called ergodic if it is measure
preserving and if for any A € F satisfying 7,(A) = A for all k € Z4, it holds
that P(A) € {0, 1}.

Example 2.2.1 (i.i.d. charges). A typical probability space we have in mind
18 the one arising from a random distribution of particles of charges q1 and g
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on the sites of the lattice 7% with probabilities p1 and 1 — py. The probability
space is then given by Q = {ql,qg}zd and P = p®Zd where p = p16g, + (1 —
P1)0g,. In this case, the group action is T,(w) = w.4i. See Appendiz 2.A for
details about probability spaces and ergodic group actions.

The ergodic theorem [151, Theorem 6.1, Theorem 6.4], which will be
extensively used in the sequel, can be stated as follows:

Theorem 2.2.2 (Ergodic theorem). If 7 is an ergodic group action of Z°
on Q and X € LP(Q), with 1 < p < oo, then,

fm o Y X(w) =B,

almost surely and in LP (§2).

We recall the following consequence of the ergodicity of the group action,
that we will use later.

Theorem 2.2.3. [125, Theorem 1.10] Let T be a group action of Z¢ on Q.
Then 7 is ergodic if and only if any random variable (r.v.) which is invariant
under T, that is, X o1, = X for any k € Z¢, is constant almost surely.

Proof. Assume that 7 is ergodic and let X be a r.v. invariant under 7. For
teR, let Ay = {w: X(w) < t}. We easily check that 7(A;) = A; for any
k € 74, therefore P(A;) € {0,1}. As t — P(4;) is a non-decreasing function
going to 0 as t — —oo and going to 1 as ¢ — +o0, then it is a step function,
stepping at a certain value tg. Thus

P(X # to) = lim P(A;) + lim P(Q\ 4) =0+1-1=0

t—ty t—t,
and
X =ty as.

Conversely, suppose that any 7-invariant r.v. is constant almost surely and
let A € F such that 7,(A) = A for any k € Z% The rv. X = 14 is
clearly invariant under 7. Therefore, it is a constant equal to 0 or 1. Thus,
P(X =1)=P(A) € {0,1}. O

A measurable function f: Q x R? — C is called stationary if
Vk € 2%, f(re(w),z) = f(w,k + ), a.s. and a.e.

Note that if the probability set €2 is finite, then the stationary functions on
Q x R? coincide with the nZ?-periodic functions on R?, n being the cardinal
of 2. We also have the following result, which is a direct consequence of
Theorem 2.2.3.
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Proposition 2.2.4 (Characterization of ergodicity). Let T be a group action
of Z% on Q. Then T is ergodic if and only if the stationary functions that are
constant with respect to x a.e. are constant with respect to w a.s.

Proof. Assume that 7 is ergodic and let f be a stationary function constant
with respect to z a.e. Then, for any w € 0, there exists a constant X (w) and
a Borel set B(w) C R? satisfying m(R?\ B(w)) = 0 such that f(w,z) = X (w)
for any o € B(w); m being the Lebesgue measure. For k € Z% and w € Q,
it is easy to see that there exists x € B(7x(w)) such that x + k € B(w).
Therefore, as f is stationary, we have a.s.

X)) = f(m(w), 2) = f(w, 2 + k) = X(w).

It follows that X is invariant under 7, thus constant a.s. by Theorem 2.2.3.
We deduce that f is constant with respect to w a.s.

Conversely, assume that the stationary functions that are constant with
respect to x a.e. are constant with respect to w a.s. Let X be a r.v. invariant
under 7 and f(w,z) := X(w) a.s. and a.e. It is clear that f is stationary.
Using the assumption, we conclude that X is constant a.s. and that 7 is
ergodic by Theorem 2.2.3. U

We will make use of the families of stationary function spaces
LP(L9) = {f el? (Q, L, (Rd>> | fis stationary} ,
and
H = {f elL? <Q,Hf:fc (Rd)> | fis stationary} ,

and resort, for convenience, to the shorthand notation LY = L% (LP). En-
dowed with the norms

1
HfHL’S’(Lq) =E (Hf”iq(@)) ! )

and the scalar products

(f.92 =E(f.92@)»  (f9)ur =E(f.9)um@))

1 1\¢
Q= [—§,§>

denotes the semi-open unit cube, the spaces L (L?) are Banach spaces and
the spaces L? and H!" are Hilbert spaces.

Starting from the usual Sobolev embedding theorems, it is easy to show
embeddings of the form H™ — L2(LP). For example, in dimension d = 3,
it holds that H'(Q) — L5(Q). Denoting by C, the Sobolev constant such
that

where

Vfe HY(Q), Iflrsq) < Cel )
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we have for f € H},

(@ Mo < Cell F(w, )l (@), 2,

hence
E(I/1300)) < C2E (I 3@
that is,
1 £llz2zey < Cull fllmr-

We denote by H = L? (Rd) the space of complex valued, square integrable
functions, equipped with its usual scalar product (-,-). We also denote by

e B3 the space of the bounded linear operators on H, endowed with the
operator norm |-|;

e S the space of the bounded self-adjoint operators on H;

o 5, the p Schatten class on H. Recall that &; is the space of the
trace class operators on H and G4 the space of the Hilbert-Schmidt
operators on H.

Let D be a dense linear subspace of H. A random operator with domain
D is a map A from (2 into the set of the linear operators on H such that
D C D(A(w)) a.s. and such that the map w — (A(w)z,y) is measurable for
allz € Dand y € H.

Of importance to us will be the uniformly bounded random operators A
which are such that supessyeq ||[A(w)]] < oco. The Banach space of such
operators is denoted by L (€, B). This is a W*-algebra which is known to
be the dual of L'(, &) (see, e.g., [138, Corollary 3.2.2]). We will often use
the corresponding weak-x topology on L>°(Q, B) for which A,, —, A means

E (Tt (A, B)) — E (Tt (AB))

for all B € LY(Q,&1). Since L'(£2, &) is separable, any bounded sequence
(Ap) in L>(€, B) has a subsequence (A, ) which converges weakly-* to some
A € L*°(Q, B). Similarly, we know that the dual of LP(2, &) is nothing else
but Lp/(Q,Gq/) where 1 =1/p+1/p' =1/qg+1/¢ and 1 < p,q < .

Let (Uk)peza be the group of unitary operators on #H defined by
Unf(z) = flx+ k), ae., VfeH, Vkez

A random operator A (not necessarily uniformly bounded) is called ergodic
or stationary if for any k € Z%, D C Ui(D) and the following equality holds

A(mip(w)) = Uk A(w)Uj, as.
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One of the fundamental theorems for ergodic operators [148, Theorem 1.2.5
p.13] states that for any self-adjoint ergodic operator A, there exists a closed
set ¥ C R and a set 1 € F with P(1) = 1, such that o(A(w)) = X, for all
w € Q. The set 3 is called the almost sure spectrum of A.

We finally denote by S the space of the ergodic operators on H that are
almost surely bounded and self-adjoint.

2.2.2 Ergodic locally trace class operators

In this section, we recall the definitions of the trace per unit volume, the
density and the kernel of an ergodic locally trace class operator (see e.g. [17,
40]). For 1 < p < oo, we denote by L (Rd) the space of the compactly
supported LP functions on R

Definition 2.2.5 (Locally trace-class operators). A random operator A is
called locally trace class if YAy € L'(Q, &) for all x € L (R?), that is,

Yy € L2(RY), E(Tr (\XA(-)X\)) < 0.

We recall in Appendix 2.B.4 some properties of locally trace class oper-
ators that we will use in the sequel.

We now focus on the particular case of ergodic operators, and denote
by G, the space of the ergodic, locally trace class operators. The following
characterization of the positive operators of G, will be useful.

Proposition 2.2.6 (Characterization of ergodic locally trace-class opera-
tors). Let A be a positive, almost surely bounded, ergodic operator. Then A
is locally trace class if and only if E(Tr (19 A(-)1g)) < oo.

Proof. 1f A is locally trace class, then by definition E(Tr (19A(-)1g)) < oo.
Conversely, assume that E(Tr (19 A(-)1g)) < oo and let B be a compact set
of R%. As A(w) > 0 a.s., then a.s.

Tr (1gAW)1p) < Tr | Y lgueAw) D> low |
kel jel

where I = {k € Z%, Q+ kN B #0}. Therefore

Tr (1pAW)18) < D Tr (Ig1xAW)10+j)
k.jel

=Y Tr (1g4;Aw)1g+;)
jel

= ZTr (Ur1QU; A(w)U1U;)
jel

= ZTr (1gA(Tj(w))1q) -

jel
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It follows that

E(Tr (1pA@w)1p)) < Y E(Tr (1gA(m(w))1))
Jjel
= |[IE(Tr (1gA(w)1lg)) < cc.
As {1p, B a compact set of Rd} is dense in LX(RY), we deduce that A €
S,, which concludes the proof of the proposition. O

The trace per unit volume of an operator A € &, is defined as

Tr (A) =E(Tr (1A () 1q) ). (2.2)

The following summarizes the main properties of locally trace-class er-
godic operators.

Proposition 2.2.7 (Kernel and density). Let A € &,. Then, there exists a
unique function A(-,-,-) € LY(Q, L2 (R? x R?)), called the kernel of A, and

loc

a unique function py € L., called the density of A, such that

Vo € LERY), (A(w)y) (z) = 5 Alw, z,y)e(y)dy a.s. and a.e.

and
Vx € L2 RY), Tr (yA(w)x) = /]Rd 2 (z)pa(w,z)dz a.s. (2.3)

The kernel A(-,-,-) is stationary in the following sense
Almp(w),z,y) = A(w,x + k,y+ k), Vk € Z¢ a.e. and a.s. (2.4)
Moreover, if A >0, then pa > 0.

Note that it follows from (2.2) and (2.3) that

E(A)=E</QM>-

Proof of Proposition 2.2.7. As the operator A(w) is locally trace class a.s.,
there exists a unique function A, (z,y) € L2 .(R?xR?) and a unique function
puw(x) satisfying

Vo € LRY), (AW)e) (0) = [ Au(wnol)dy e (25)
and
Wy € L2(RY), Tr (xA(w)y) = /R @l de as (26
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We set A(w,z,y) := Au(x,y) and pa(w,z) = pu(z). For a compact set
B C R?, we deduce from (2.5) that a.s.

[A(w, - )2BxB) = 1BAW)1B[s, < Cl1pA(W)lEs,-
Therefore, since A € &,
E (A, )2exp) < CE([1sAW)lEls,) < oo,

which proves that A(w,z,y) € LY(Q, L2 (R? x RY)). By (2.6), we have a.s.

loc

[ sl do= [ loaen,@)] do < T (LaA@1s).
Therefore, since A € &,

B ( [ Ioate.)] de) <E(Tr (1p4)180) <

which proves that pa(w,z) € Li (R?). Let us now prove the stationarity of

the kernel and the density of A. Let k € Z%. For ¢, € L?(R), we have a.s.

5 Alme(w), z,y)p(y)v(z) dy dz = (
= (0, Up A(w)U;p)
= (U, A(w) Uy )

B /Rd A(w, z,y)p(y — k)p(z — k) dy dx
- /R A(w,z + kyy + K)p ()b () dy da,

which proves that A(w,z,y) satisfies (2.4) by the uniqueness of the kernel.
Finally, for y € L°(R?), we have a.s.,

/ pA(Tk(w),x)X(x)2 dx = Tr
R4

By linearity and the uniqueness of the density, we conclude that ps € L. O
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The following cyclicity property is proved in [40], based on arguments in
[39]. We give here a detailed proof.

Lemma 2.2.8 (The cyclicity of the trace per unit volume). If B is an ergodic
operator in L>° (2, B) and A an operator in &, N L>(§2, B), then BA and
AB are in &; N L>®(Q, B) and

Tr (BA) = Tr (AB). (2.7)

Proof. We consider the Von Neumann algebra A = {A € L* (Q,B), A ergodic}
and its positive part AT = {A € A| A > 0}. Let A € Asuch that Alp € &
for any compact set B C RY. Then A*A € &, and by Fubini’s theorem, we
have

Tr (A*A) =E | Tr | 104" ) 1ordlq
kezd

=) E(Tr (1gA"1g4rAlQ)).
kezd

By the cyclicity property of the trace, we have

Tr (AA) = Y E(Tr (1g15AlgA™1g4))

kezd

=) E(Tr (Ui 1QUc AU Uk 1QU U A*Uf 1QUy))
kezd

= > E(Tr (1gA(m(-)) 1ok A*(16()1@))
kezd

=Y E(Tr (1gAlg_A"1g))
kezd

=E(Tr (1gAA*1g))

=Tr (AA"),

where we have used that 7 is measure preserving. By [39, Corollary 1, p.83|,
the function Tr (-) is a trace on A™ (see |39, Definition 1, p.81]). Therefore,
by [39, Proposition 1, p.82|, Tr (-) can be extended to a linear form on
the ideal M = L™ (2,B) N &, which satisfies Tr (BA) = Tr (AB) for any
A€ M and any B € A. O

2.2.3 Ergodic operators with locally finite kinetic energy

Ergodic density matrices for fermions are operators v € &; NS such that
0 < v <1 as. By the ergodic theorem, the trace per unit volume can be
interpreted from a physical viewpoint as the average number of particles per
unit volume. In this section, we define and study in a similar fashion the
average kinetic energy per unit volume.
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2.2.3.1 Definition

For 1 < j < d, as usual, we denote by P; = —i0;; the momentum operator
in the 7 direction, which is self-adjoint w1th D( i) ={p € H |00 € H}.
As P; commutes with the translations, we see that for all A € &,, the
operator PjAP; is ergodic. The operator PjAP; is well defined and bounded
on D(FPj), Wlth values in D(P;)’, where D(P )’ is the topological dual space
of D(Pj). We say that the kinetic energy of A is locally finite if P;AP; € &,
for all 1 < j < d, and we then call

d
Z (P;AP;)

the average kinetic energy per unit volume of A. We denote by &, ; the
subspace of &; composed of the ergodic locally trace class operators with
locally finite kinetic energy.

2.2.3.2 Hoffmann-Ostenhof and Lieb-Thirring inequalities for er-
godic operators

For finite systems (y € 6, NS, 0 < v < 1 and Tr (—A7y) < o0), the
Hoffmann-Ostenhof |73, 112| and Lieb-Thirring [115, 116, 112| inequalities
provide useful properties of the map v — p,. In this section, we state and
prove an equivalent of these inequalities for ergodic density matrices with
locally finite kinetic energy.

Proposition 2.2.9 (Hoffmann-Ostenhof inequality for ergodic operators).
Let A be a positive operator in &y 1 NS. Then

VpAEH! and E (/Q\v\/m?> < Tr(—AA).

Proof. 1t follows from Proposition 2.2.7 that \/pa € L2. Let B be a compact
set of R and 1 € C2°(R?) such that = 1 on B and 0 < n < 1. By the
uniqueness of the density, we easily see that p,a, = p4 on B. Besides, the
operator nA(w)n has finite kinetic energy a.s. Indeed, for any 1 < j < d, we
have [Pj,n] = —i0,,n € C°(R?) and

E(Tr (PjnAnF;)) = E(Tr (nP;AP;n)) + 2Re (E (Tr ((—idy;n)AP;m)))
=B (Tr ((~i0;m) A (=i0:,1)))
< 2K (Tr (02,mAx;n)) + 2E (Tr (nP;APjn))
<C(Tr (A) +Tr (—A4)).
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Therefore, the Hoffmann-Ostenhof inequality applied to the operator nAn
gives

‘V, /P Aw) ‘ = |V \/Pra@p! < Z)\ )IVeon(w)[? as. and a.e. on B,

neN

where (¢n(w)),cy 18 an orthonormal basis of eigenvectors of the compact
self-adjoint operator nA(w)n and (A, (w)), oy the associated eigenvalues. As

/Z)\ )| Vo (w ZTr (1pPjnA(w)nPjlp) as.

neN Jj=1

and as for all 1 < j <d, 15 [P},n] = —ilpd,,n = 0, we deduce that

d
/’v1/pA(w‘ <ZT1‘ 1B77PA ) 3771B ZTI“ (1BPjA(w)Pj13).

j=1
Therefore

d
E (/B vam?) < ;E(Tr (1P AP 15)).

As A has locally finite kinetic energy, we conclude that \/p4 € H!. For
B = @, we obtain the stated inequality. ]

The following corollary is an obvious consequence of Proposition 2.2.9
and of the Sobolev embeddings.

Corollary 2.2.10. Let A be a positive operator in &y NS. Then, pa €
LY(LP), forp = +o0ifd =1, p € [1,400) ifd =2 and 1 < p < d%‘lQ if
d> 3.

The following is now the ergodic equivalent of the Lieb-Thirring inequal-
ity [115, 116, 112].

Proposition 2.2.11 (Lieb-Thirring inequality for ergodic operators). There
exists a constant K(d) > 0, depending only on the space dimension d > 1,
such that for ally € &, ;NS with 0 < vy(w) <1 a.s.,

p €Lt and K(d)E (/QW > < Tr (—Ay). (2.8)

Proof. To prove (2.8), we apply the Lieb-Thirring inequality in a box of
side-length L, and then let L go to infinity. The constant K(d) can be
chosen equal to the optimal Lieb-Thirring constant in the whole space. Let
'y =[-L/2, L/Q)d and let (xz)7cn- be a sequence of localizing functions in
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cx (Rd), such that 0 < xz <1, xr =1onI';_1, xr = 0 outside of 'z, and
[Vxr(x)] < C. We first apply the Lieb-Thirring inequality to x7v(w)xr, and

obtain
dt2

K(d)/F py(w, ) d *dr < Tr (—Axry(w)xr) a.s.

Next, using the stationarity of p, and the equality [Pj, x1] = —i0x, X1, we
get for any € > 0

d
a+2 1+¢)
K(d)E</ Py > < %ZE Tr (xr.PivPixL))
Q (L-1"4

1“/5 ZE (Tr (0, x2) 7 (00, x2))) . (2.9)

For each 1 < j < d, as P; commutes with translations, we have a.s.,

T (xePy(@)Pixe) < > Tr (lguPpy(@) Pilgix)
keZd, Q+kCTr,

= > T (UilUn Py (w) PUS 1QUs)
keZd, Q+k Ty

= Y Tr (1P (@)Pile) -

keZd, Q+kCl'y
It follows from the measure preserving character of 7 that

d

S E(Tr (e PyPixc)) < Y, E(Tr (1gPy(w)Pilg))
j=1 kerpnzd
= LTy (—A7). (2.10)
Besides,
Tr ((8ijL)'Y(8ijL)) - / py(w, ')(aijL)Q <C py(W, )
FL\FL 1 FL\FLfl

where we have used that Vxp is uniformly bounded. Using again the sta-
tionarity of p,, we obtain

d
ZIE (Tr (8ijL) y (aijL)) < COL*'Tx (7). (2.11)

J=1

Combining (2.9), (2.10) and (2.11), letting L go to infinity then letting £ go
to 0, we end up with the claimed inequality. O
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2.2.3.3 A compactness result

In this section we investigate the weak compactness properties of the set of
fermionic density matrices with finite average number of particles and kinetic
energy per unit volume

K= {veﬁmﬂﬁ, Ogvgla.s.}.

This set is a weakly-* closed convex subset of L>°(Q2, B). The following result
will be very useful.

Proposition 2.2.12 (Weak compactness of ergodic density matrices). Let
(vn) be any bounded sequence in IC. Then there exists v € K and a subse-
quence (yp, ) such that

1. A, = v in L™®(Q,B),

k—o0

k—o0
3. P, kjoo p~ weakly in Ls¢
4. Tr (=Av) <liminf Tr (—A~,, ).
n—oo

Note that, in average, there is never any loss of particles when passing
to weak limits: Tr () tends to Tr () as n — oo. On the other hand, even
if we have p,, — py weakly and E( [, p+,,) = E(J,, py), in general we do not
have almost sure convergence and we do not expect strong convergence in
LE for 1 <p<1+2/d.

Example 2.2.13 (Weak versus strong convergence for p,, ). Consider a
smooth function ¢ with compact support in the ball B(0,1/2) such that
el 2 =1, and the operator

1 + sin(27mnwy)
M=) = e+ k) e+ k),
kezd
where (Wi)eza are i.i.d. variables, uniformly distributed on [0,1]. Then we
have v, € G5 1, 0 < v <1,
1 - o0
M=y =5 D el +R){(e(+ k)| in L2, B)

kezd

and

1+ sin(2 1
P = D M o+ R =y =5 3 e+ R)’
kezZd kezd
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weakly in LY for 1 < p < co. We also have

E</<2p7n>:E</q?p7>, vneN.

However, since sin(2rnwy) — 0 weakly but not strongly in LP([0,1]), we do
not have any strong convergence for p.,, .

Proof of Proposition 2.2.12. Consider a sequence (7,) as in the statement.
As detailed in Section 2.2.1 after Theorem 2.2.2, L>(Q,B) is for us the
W*-algebra which is the dual of the separable Banach space L'(Q, &),
see [138, Corollary 3.2.2]. Since (7,) is bounded in L*°(€2, B), there ex-
ists v € L>®(Q, B) such that -, converges to v weakly-* in L>(2, B), up to
extraction of a subsequence (denoted the same for simplicity). Recall that
Y —x 7 Means

lim E (Tr (A3)) = B (Tr (47))

n—o0
for all A € L'(Q,&1). Using for instance A = Y |f){g| for some fixed
f,g9 € H = L*R?) and some fixed Y € L'(Q), we find in particular that

Vfg €M, VY € LNQ), E(Y{gf) = lim E(V(gmf).  (212)

Hence, (g,v,f) converges to (g,vf) weakly—x in L>°(Q). Using this, it is
easy to verify that ~ is ergodic and satisfies v* =, 0 <~ <1 a.s.

Let now (fg)x>1 be an orthonormal basis of L?(Q) where we recall that
@ is the unit cell. Using that E ((fx, nfx)) = E ((fx,vfx)) for each k > 1
as n — oo, and Fatou’s lemma in ¢!(N), we obtain

E(Tr (1g71Q) = D E((fi:7vfi)) < UminfE [ > (fe, nfr)

n—o0
k>1 k>1
= hnrggf E(Tr (1gvmlg)) . (2.13)

By Proposition 2.2.6, we conclude that v € &;. The same argument can
be employed to show that v € &, ;, assuming this time that each f is in
H}(Q). Then we have for each k

1 E (e PP fi) = lim E (P fi). 3 (Pif))) = E (P50 A(Pifo))

by (2.12) and with P; = —id,,. By Fatou’s Lemma in ¢!(N) we sce that

d
Tr (~Ay) = > E(Pifu),v(Pife))) < liminf Tr (~Ay,).  (2.14)
j=1 1
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Let us now prove that Tr (,) indeed converges to Tr (7). We consider
a smooth function x in C2°(R?). The sequence (7,) being bounded in [CIRE
there exists a constant C' € Ry such that for alln € Nand 1 < j <d,

E (Tr (x70X)) + E (Tt (xP3 Pjx)) +E (Tr (92,X) 7 (92;x)) < C.
Using again the relation [P}, x| = —id,; X, we obtain
E (Tr (Pjx7axPy)) < AC.

We next use that for a non-negative self-adjoint trace class operator A with
finite kinetic energy, we have

Tr ((1 CA)TA(L— A)%) = Tr (A) + Tr (~AA).

Indeed, writing A = Y -5 An|@n)(@n|, where (A,)nen is a summable se-
quence of positive real numbers, and (¢,)neny an orthonormal family of
L? (R?) consisting of functions of H'(R?) (see Proposition 2.B.5), then

T ((1-2)7A(1-4)2) =D, Z‘ P, (1= A)2 )

neN €N

_ZA

neN

-3 /1+\pr>m<p>\2dp
neN

/|80n
neN

+ZAnW/Rd\pr2m<p>2

2

Pl L2 (RY)

neN
= Z An + Z An ||v80n||%2(]Rd)d
neN neN

= Tr (A) + Tr (—AA).
Hence,
E(Tr (1= 2)7 x3ax (1= 4)7) ) = E(Tr (7)) + E(Tr (~A(c3x)))

d

=E(Tr (xX)) + > E(Tr (PixmxP))
j=1

< (1+4d)C.

This proves that (1 — A)Y2yy.x (1= A)Y? is bounded in L'(Q, &) or,
equivalently, that (1 — A)1/2 X+/Tn is bounded in L?(€2,&5). From this we
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infer that
(1= A)2 xnx = {(1 — A)% Xy (1— A)%} (1-4)72

is bounded in L(Q, &), since (1 — A)fl/Q is a bounded operator. Similarly,
we can write

(1= A)% xyax = {(1 —A)? xﬁ} VX

which is now bounded in L?(£, &5), since H‘ /’yan < C due to the assump-

tion that 0 < 5, < 1. We conclude that (1 — A)1/2 X7VnX is bounded in
LY(Q,61) N L2, 63), hence in LP(Q, &,) for all 1 < p < 2, by interpola-
tion. In particular,

(1- A)% XX — (1 — A)% xvx weakly in LP(Q,&)) for all 1 < p < 2.
(2.15)
That the limit can only be (1 — A)Y2 yyx follows for instance from (2.12)
with functions f,g € H'(R9).
We consider now a fixed function Y € L*°(£2) and write

E(YTr (x7ax)) = E (YTr ((1 — M) xyx1p (1 - A)_l/z)) :

where B is a large enough ball containing the support of x. By the Kato-
Seiler-Simon inequality [145, Theorem 4.1],

Vp>2,  [If(@)g(=iV)lls, < @77 fll oy 191 Loy -

we have

1
e
S (27T)7d/p|B| lid / dp 1+d )
CI R4 (1 + |p|2) 2

hence 15 (1 —A) 2 € S144. Thus Yip(1—A)? € Lo, &144) C
L0, 81,4). Since 1 < 14 1/d < 2 we obtain by the weak conver-
gence (2.15) in L"/9(Q, &14y/4) = LQ, &144),

foa-s7]

lim B (YTr (x70)) = E (YT (1= 2)2x9x15 (1= 4)7)) = E(VTx (x7))

n—oo

We can reformulate this into

: 2 _ 2
ggoE(Y/Rdx pyn> —E<Y/Rdx pw>, (2.16)

for all Y € L>=(Q) and all xy € C°(RY).
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As Tr (—A%,) is bounded, we infer from the Lieb-Thirring inequality

for ergodic operators (Proposition 2.2.11) that (p,,, ) is bounded in L,
1+2/d

We can therefore extract a subsequence which weakly converges in Lg

to some p € L§+2/d. Since the space spanned by the functions of the form

Y2 with Y € L®(Q) and x € C°(Q) is dense in L'T92(Q x Q), we deduce
from (2.16) that p, = p. Now, using that 1o € L'*¥2(Q x Q), we finally
obtain the claimed convergence

nlggoﬂ('Yn):JEgoE</Qp%> =E</Qp»y) =Tr (v).

This concludes the proof of the proposition. O

2.2.3.4 Spectral projections of ergodic Schrédinger operators

The following result provides a control of the average number of particles
and kinetic energy per unit volume of the spectral projections of an ergodic
Schrodinger operator, in terms of the negative component V_ = max(—V,0)
of the external potential. We will use it later in Section 2.4.4 to prove that
the ground state density matrix of the reduced Hartree-Fock model with
Yukawa potential is solution to a self-consistent equation.

Proposition 2.2.14 (Spectral projections are in &, ;). Let V € L2 be such
that the operator H = —A 4V is essentially self-adjoint on C2°(R?) and
V_ e L;+d/2. Denote by Py = 1(_oo ) (H) the spectral projection of H
corresponding to filling all the energy levels below \. Then, Py € G, for
any A € R and there is a constant C > 0 (depending only on d > 1), such

that 4
d+2 d+2
Tr (Py) <C (E (/ (V-2 )) ; (2.17)
Q

d+2
Tr (-APy) < CE </ (V- 2 )
Q

The estimate (2.17) on Tr (P)) is probably not optimal but it is sufficient
for our purposes.

and

Proof. Let us first prove that Py € &, ; under the assumption that V_ €
L™ (Q X Rd). The general case will then follow from an approximation ar-
gument. By the Feynman-Kac formula [143, Theorem 6.2 p.51], we have for

all t > 0
V=l oo gy

Pe—t—a+v) < a.s.

(4mt)Y/?
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z—N\)

Then, using the inequality 1(_ y (z) < e U , we have

IO =2~ oo ey

pP)\ S pe,t(,AjLV,)\) S a.s. (218)

(4mt)Y/?

By the assumption that V' is uniformly bounded from below, we deduce
that pp, € L™ (Q x ]Rd). Likewise, using the inequality z1_ y (z) <

t(z—X)

AMy>oe™ , we obtain that

V=)= e (2

pHP, < Ay>0p—t-atv-n < Aly>o (dmt) a.s.
T
Therefore
V=)=l poo (ra)
p—apry, < Alx>o e —Vpp, as. (2.19)

(4mt)

Since pp, € L (2 x RY), then the RHS of (2.19) is in L} and —AP, € &,.
Hence P\ € &, ;.

Now that we know that Py € &;;, we can derive bounds which only
depend on [[(V' — A)_[[,1+4/2. We start by noting that by the Lieb-Thirring
inequality (2.8) for ergocsiic operators, we have

0<Tr (FA+V=XN)_)=-Tr (-A+V -\ P)

d

E]

d+2
<-C HPPAHLE%Q +[|(v - A)J!Lﬁz HPPXHLM :
Therefore

lop,l
L

a2 < C (V- A),H%M (2.20)
d L52

s

and

Ir (Py) = llopliey < Cliendl

a2 < CH(V—/\)—H%M- (2.21)
d L.?

E]

As 0 < —Tr (A +V — ) Py), then using (2.20), we obtain

Tr (AP) < ~Tr (V=N P) < C[(V - ALHL# lopyl oz

S

gCH(V—A)_HZiﬁ. (2.22)

S

This concludes the proof in the case of bounded below potentials. In the gen-
eral case we consider the sequences of cutoff potentials V,, = max{V,—n}
and corresponding operators H,, = —A + V,, and show that for any bounded
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continuous function f, the operator f (H,) converges to f (H) weakly-* in
L>(Q,B). Indeed, since C° (Rd) is a common core for all the operators
H, a.s. and since, for each ¢ € CF (Rd), we have that H,p converges
to Hyp in L? (]Rd) a.s., we conclude that H, converges to H in the strong
resolvent sense a.s. (see [34, Proposition 1.1.8, p.8]). Therefore f (H,) con-
verges to f (H) in the strong operator topology a.s. (see [131, Theorem
VIIL.20, p.286]). Finally, as f is bounded, then for any ¢,v € L*(R%), we
have [{(¢, f(H,)Y)| < Clle|l||¢| a.s. We deduce by the dominated con-
vergence theorem that for any v € L>(Q), E (u{p, f(Hy)1)) converges to
E (u(p, f(Hy)v)), which implies the weak-* convergence of f(H,) to f(H).
Let now A € R, € > 0 and f. be a continuous function satisfying

Lcoon < e < Loonte)-
Using Fatou’s Lemma and the weak-* convergence of f.(H,) to f.(H), we
deduce in the same way as in (2.13) and (2.14) that f.(H) € &, ; and
Tr (fa(H)) < hfginfﬂ (fa(Hn))
and
Tr (_Afe(H)) < lim inf Tr (_Afe(Hn))'
n—o0
Besides, for any n € N and 1 < j < d, we have

P>\ S fE(H)7 fa(Hn) S 1HnS)\+€7
PiP\P; < Pjf:(H)P; and P;f.(Hn)P; < Pjly,<xicF;.

Therefore,
ﬂ (P)\) < hmmfﬂ (1Hn§>\+6)

n—oo
and

ﬁ (—AP)\) < hmlnfﬂ (_AlHnS)\+€) .

n—oo

Finally, as for any n € N, the potential V,, is uniformly bounded below, then
we can use (2.21) and (2.22) for the operators H,,. We get

d
Tr (Py) < lminfTr (1, <xe) < Cf|(Va = A =€) % s
n o0 - LST
d
<OV =2=2) [P ue- (2.23)
Ly
Similarly, for the kinetic energy term, we obtain
d+2
Tr (—APy) < liminf Tr (=Alg,<xie) SC[(V=A—e)_|| 2., . (2.24)
L_Q_

n—o0
s

Letting € go to zero in (2.23) and (2.24), we conclude the proof of the propo-
sition. O
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We can now use the previous theorem to deduce a useful variational
characterization of the spectral projection Py, among all ergodic fermionic
density matrices v € K having a locally finite kinetic energy.

Proposition 2.2.15 (Variational characterization of spectral projections).
Assume that V' is as in Proposition 2.2.14 and denote again Py :=1_, y) (H)
with H = —A+ V. For every A € R, the minimization problem

inf {ﬁ(—Afy) +E (/vay> —\Tr (7)} (2.25)

yek

admits as unique minimizers the operators of the form v = Py + § where
0 <6 <1p(H).

Note that E(fQ V py) is well defined in (—o0, +00] since V_ € it by
assumption, whereas p,, € L§+2/ d by the Lieb-Thirring inequality (2.8).

Proof. When 7 is smooth enough (—A~y € &, for example) and V' € L°, we
can write

1 (Al = P)+E( [ V(0= pe) ) =25 (= Py
=T (FA+V =Ny —FR) 2T (| -A+V =Xy - P)?).
In the last estimate we have used the cyclicity property (2.7) and the fact

that
Pi-(y — Py)P- — Py(y — Py)Py > (v — P))?,

which turns out to be equivalent to 0 < v < 1. Here, we use the notation
Pt = 1 — P, for any orthogonal projector P. A simple approximation
argument now shows that the inequality

Tr (—Aq)+E ( /Q vp,y) ATE (7) = Tr (— AP AE ( /Q v,opk) AT (Py)
+ I (1 =AMy = P)?IH = A2

is actually valid under the weaker assumptions of the proposition. It is then
clear that P, minimizes (2.25) and that the other minimizers must satisfy
|H — M\'/2(y — Py) = 0, which is the same as saying that the range of v — Py
is included in the kernel of H — A. O

2.2.3.5 A representability criterion

In the ergodic case, we know that a density p must satisfy p > 0, \/p € H !

and p € L;“/ d, by the Lieb-Thirring inequality (2.8). Clearly a stationary
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function p such that p > 0 and \/p € H 1is not necessarily the density of an
ergodic density matrix with finite kinetic energy, since in general

d+2
{p>0]VpeHl} ¢ LT .

It is an interesting open problem to determine the exact representability con-
ditions in the ergodic case. Theorem 2.2.16 below gives sufficient conditions
for p to be representable. These conditions are also necessary for d = 1.

Theorem 2.2.16 (A sufficient condition for representability). We assume
that d > 1. Let p be a function satisfying

p>0, peL?and \/pc H..

Then, there exists a self-adjoint operator v in &; 1 NS, satisfying 0 <y <1
and py = p a.s.

The proof of Theorem 2.2.16 follows the ideas of Lieb [107].

Proof. We start with the case d = 1. We consider two functions g, o1 €
C2°(R) satisfying

e 09 >0,¢1 >0,
e supp(yo) C [—%, %] and supp(y1) C [0, 1],

® > ez ¥k = 2 where por(-) = wo(- — k) and popq1(-) = w1(- — k).

Such two functions can be constructed by considering a function ¢y €
C(R?), with support in [—%,%] such that ¢y = 2 on [—%,i] and 0 <
o < 2, and define the function ¢ as follow

@1($):2—@0($) ) 566[05%]
o1(z) =2 —po(x—1) xe[%,l
(see Figure 2.1).
$0 $1
SIS S A A B

Figure 2.1: Example of functions g and ¢ used in the proof of of Theo-
rem 2.2.16.

We denote by
pre(w, ) = pw, z)er (),
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and observe that p = >, -, pr/2. Let

Ni(w) = /Rd pr(w, x) d.

For each k € Z, we set ¢ (w,z) =0 for all j € Z if Nj, (w) =0, and

o3 = pr(w, ) ox 2wy [* N
Pjk(w,x) = ) p<Nk(w)/mpk( ,t)dt)

otherwise. If Ni(w) # 0, then the family of functions (¢; 1 (w,"));eza is an
orthonormal family of L?(R) and for each j € Z, ¢, x(w, ) € H'(R) . Indeed,
let 7 # j' € Z. We have

Lot o= [ 20 a0
and -
R L (% [ ot Mt)
s [0 (R )]
~7 7 (0 (R e >) ) 0

Vi n(w, ) = <V§ﬂx + \(/pj’“v:_x ]5:” (w0 ,;c)>

X exp <% /_xoo Pk (w, t) dt> .

As pr(w, ) has a compact support, then by the assumptions that \/p € H}
and p € L3, we have \/p(w,-) € HY(R) and pp(w,x) € L3(R) almost surely
and

3
3 HpkHEB(R) .

2my
Vi —
95 FYRE

wax)HLQ(R) < \/ﬁ H\/mum(m

For k € Z, we introduce the density matrix

o0
=Y nixleir ) @ikl
j=1
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where 1 k(W) = li<j<n, () + (Ve(w) = [Nk (W)])1j=(ny (w))+1- Almost surely,
Ye(w)isin{y € & NS|[0<~v <1, Tr (—Ay) < oo} and p,, (w, ) = pi(w,-).
Indeed, it is easy to check that ~y is self adjoint and 0 < ~, < 1 a.s. The
density of ;. is given by

e = Ok lojal? ank N0 = Pre

JEL JEL

Thus

Tr () = / pr = Ni.
R4

It follows that

Bt () = ([ o) < ol (2.26)
Similarly for the kinetic energy, we have
Tr (—Avk)
2
= an,k Hv@jk”p(]}g)
jeZ
47 2
< Nk‘ ”\/ HHI(R) Iny#0 +2 an k™3 N3 HPkHLS(R L0
JEZ
S 3+ (Ve = [NA]) (V] + 1)
= 2||\/prl 7 gy + 877 NE 1Pkl 25 ) 1o
k
<2 ||\/—HH1 +C Hpk||L3(R
Therefore
2
B(1r (-a) <28 |Vl ) + CE (Ioslie)

< C (IVally +lellEs ) - (2.27)

Since the supports of the kernels of v, and ~; 9 are disjoints for all k,1 €
Z, and since the operators 7, are uniformly bounded, the operators v, =
Y okez v2k and v, = >, o7 Yop41 are well defined as operators on L3(R), self-
adjoint and satisfy 0 < v,,7. < 1 a.s. Moreover, they are ergodic operators.
Indeed, as p is stationary, we have for all R, k € Z, a.s. w € Q and a.e. x € R

par (TR(W),2) = p(TrR(W), z)par ()

)
+R—(R+F)
)-



Therefore, for all j € N,

@ik (TR(W), ) = $j,2(k+R) (w,z + R),

and
nj,Qk(TR(W)) = N 2(k+R) (w).

It follows that

YeltrRW)) = D mjok (Tr @) [@jk(TR(W), ) ) @ik(TR(W), )]

keZ jeN

= Z Z T 2(k+R) (w) |UR90j,2(R+k) (w,) ><UR90j,2(R+k)(w7 )‘
k€Z jeN

= Z Z Urnj oot r) (W) |5.2(r0) (@, ) ) @5 2rrk) (W, )| Up
keZ jeN
- URW@(w)Uéa

which proves that -, is ergodic. We proceed similarly for 7,. By (2.26)
and (2.27), we deduce that v, and 7. are locally trace class and have lo-
cally finite kinetic energy. It follows that v, and 7, are in the set K =
{7 €6,;NS, 0<~y<1 a.s.}. By the convexity of IC, so is v = %TW It
is finally easily checked that p, = p.

We now turn to the case d = 2. In the same spirit as for d = 1, we cover
the space with a finite number of periodic patterns, in such a way that the
elements of each pattern do not intersect (see Figure 2.2). For example, let

5 5\2 12 11 11 12 1 5\2
Ao = -2 2} By=|=. 2 )x|-2. 2 ul-=.2)x|=. 2 2 2)
0 [ 12’12)’ 0 [3’3)4 4’4>U[ 4’4>X[3’3>’C° [6’6)

The Z2-translations of these sets Iy = Io+k, I € {A, B,C}, satisfy Innl; =10
for k # j and Upeze Ap U B U Cf, = R2. Next, we consider three sequences
of regular functions (¢} ).czq, I € {A, B,C}, such that

oh >0, supp(pf) C Iy, and > of + o +of =3.
kez?

Repeating the argument detailed above in the one-dimensional case, we
define v, for I € {A,B,C}, and v = ZIG{A,B,C} ~vr/3 and we check that
py = p and that + satisfies the desired conditions. We proceed similarly for
d> 3. O

2.3 Yukawa and Coulomb interaction

This section is devoted to the definition of the potential energy per unit
volume of a stationary charge distribution f. In our setting, f will be py —p,
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Figure 2.2: Covering in dimension d = 2 used in the proof of Theorem 2.2.16.

where g is the nuclear charge distribution and p, is the density associated
with an electronic state v. We will consider two types of interactions, namely
the (long-range) Coulomb and the (short-range) Yukawa interactions.

In dimension d > 1, the Coulomb self-interaction of a charge density f
is given by

D)= [ Vi) f@)da.

where V' is the Coulomb potential induced by f itself, which is solution to
Poisson’s equation

~AV =[S . (2.28)
Here [S?~1| is the Lebesgue measure of the unit sphere S (|0 = 2,
|S1| = 27, |S?| = 47). For later purposes, it is convenient to regularize this
equation by adding a small mass m as follows :

(A +m?)V =547 1. (2.29)

Whenever m = 0 or m > 0, we have the following formulas for the Coulomb
(m =0) and Yukawa (m > 0) self-energies:

~ 2
D) =[5 [ @%M s f-a st
(2.30)
N /d/de(x_y)f(x)f(y)dwdy
- (2.31)
:/ Wil — ) F(0) dy]
Rd |JRd
(2.32)
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Here ]/”\is the Fourier transform! of f. Of course we need appropriate decay
and integrability assumptions on f to make the previous formulas meaning-
ful. The Yukawa and Coulomb kernels are given by

m~ el — |z ifd=1,
Yo(e) =4 Ko(mle)  and Yo()={ —log(ls]) ifd=2.
|z|~Le=mI=] |z~ if d =3,

with Ko (r) = [;7e """ dt the modified Bessel function of the second
type [110]. The Coulomb potential is nothing but the limit of the Yukawa
potential when the parameter m goes to 0. Similarly, the function W, is
defined by its Fourier transform

e VBT n)
Wnll) == T IKE

Using the integral representation x~1/2 = 27~ [>°(z + s?)~lds, we see that

9 e

This can be used to compute W,, in some cases, or to simply deduce that,
when m > 0, W, is positive, decays exponentially at infinity, and behaves
at zero like |z|~2 in dimension d = 3, like |z|~! when d = 2 and like log |z
ford =1.

Our goal in this section is to define the Yukawa and Coulomb energies
per unit volume for a stationary charge distribution f. Formally, this is just

(L)

where V solves (2.28) for m = 0 or (2.29) for m > 0. We are implicitly using
here the fact that the potential V' is stationary when f has this property.
Unfortunately, giving a meaning to Poisson’s equation (2.28) in the stochastic
setting in not an easy task. Already when f is periodic, we know that this
equation can only have a solution when fQ f = 0. Here the situation is
even worse, as we explain below. To simplify matters, we first introduce the
Yukawa energy per unit volume D,,(f, f) for m > 0 and then we define the
Coulomb energy as the limit of D,,(f, f) as m — 0, when it exists. Thus we
start by giving a clear meaning to the three possible formulas (2.30), (2.31)
and (2.32) in the Yukawa case m > 0. In the next section we introduce the
stationary Laplacian —Ag which allows to write a formula similar to (2.30).

'We use the convention )?(K) = (271')_% Jga f () e ey,
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2.3.1 The stationary Laplacian

In this section we define an operator which we call the stationary Laplacian,
which is nothing but the usual Laplacian in the x variable acting on L?(Q x
Q), with stationary boundary conditions at the boundary of (). Surprisingly,
this operator does not seem to have been considered before.

Let Ag be the operator on L? defined by

D(Ag) = L2 N L*(Q,C*(RY)),
{ Aof(w,z) = —Af(w,z) a.s. and a.e., Vf € D(Ap),

where A = Z;lzl 6%], refers to the usual Laplace operator on C2(R?) with
respect to the x variable. For f,g € D(Ap), we have

(9, A0f )12 = (—/ﬁAf(-,@m)
—E(/Vug -$ﬂuMM)—E<AQR?BVme»nM>,

(2.34)

0Q) is the boundary of the cube @ and n is the exterior normal vector. We
denote by FjE {x €0Q | x; = :|:2} Then,

d
B[ dCavast) nae) =SB ([ eV s
( aQ ’ ; F*UF’ ’
Denoting by e; the unit vector in the direction 4, for 1 < i < d, we have

E(A%R?EVJE$WHW>ZE<A,

i

i ([ T T 0

gz +e)Vaf(,x+e) e dx)

(3

where we have used that f and ¢ are stationary and that 7 is measure
preserving. Thus the second term of the right hand side of (2.34) vanishes
and we conclude that

(9. A0f}zz = E (/xag Vol (o)) (2.35)
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Thus, A is a symmetric, non-negative operator on L? with dense domain
D(Ap). We denote by —Ajg its Friedrichs extension [148, theorem 4.1.5,
p.115], and call the operator Ay the stationary Laplacian. The following
proposition gives the form domain and the domain of the operator —Aj.

Proposition 2.3.1 (Domain and form domain of —Ay). It holds that
Q(—A,) = D(Ag) = H! and D(-A,) = H?.

Proof. We recall that the Friedrichs extension of Ay is the unique self-adjoint
operator A satisfying

D(Ap) C D(A) C D(Ay),
where
D(Ao) = { € L2, 3(fx) € D(Ao) :t. fa—nsoef in L2 and
(= Jor Aolfy = a1z —pgroe 0}

The form domain of A is D(Ap) and its domain is given by

D(A) = {f € D(Av), 3g € L s.t. h € D(Aq), q(f,h) = (9. h)2 }

where g(f, f) = limyo0(fn, Aofn)rz and (fy) is a sequence given by the

definition of D(Ay).
By (2.35), we have for any f € D(Ap)

( Aof)iz = E ( /Q \Vf\2> IV I
Therefore,

Q(~A,) = D(Ay) = {f € 12, 3(f,) € D(Ap) s.t. fa—tnsoof in L2 and
(Vfn) is a Cauchy sequence in (Lg)d}.

It follows that for f € D(Ag), there exists (f,), a Cauchy sequence in H}
converging to f in L2. Thus f € H! and (f,,) converges to f in H}.
Conversely, convolving f € H! with a smooth approximation of the iden-
tity, one can construct a sequence f, € D(Ag) such that (f,) converges to f
in H!. This concludes the proof of Q(—Ay) = D(Ag) = H}.
We turn to the domain of —Ag. It is easy to see that

D(~A,) = {f € HY, 3g € L2 s.t.Vh € HY, (Vf,VA) 1200 = (g, h>Lg} .

For f € H?, g = —Af satisfies the condition of the definition. Conversely,
for f € D(—Ay), by the density of H} in L2, we deduce that —Af, defined
in the sense of distributions, is equal to g given by the definition. Therefore
—Af € L? and f € H2, which concludes the proof of the Proposition.

O
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When €2 is finite, the spectrum of —Ag is purely discrete. Indeed, we can
identify H? with the nZ%periodic functions in HZ_(RY) and identify —A
with —A with nZ%periodic boundary conditions, where n = card(£2). The
spectrum of the later operator is an infinite sequence of discrete eigenvalues
converging to +0o. We prove in Appendix 2.C.1 that if the probability space
is defined as in Example 2.2.1, then o(—Ay) = [0, +00).

Thanks to the ergodicity of the group action, one can prove that ker (—Ay)
span {1}. Indeed, for f € ker (—Ay), (2.35) gives

(f,=Dsf)pz = IVSlEz =0.

Therefore, for a.s. w € Q, we have Vf(w,-) =0, thus f(w,-) = c¢(w). As f is
stationary, then by Proposition 2.2.4, f is a constant.

In contrast to the periodic case, there is (in general) no gap in the spec-
trum of —A above 0. In other words, there is no Poincaré-Wirtinger type in-
equality in H!. This can be seen, for instance, by considering the sequence of

functions ®,,(w, z) = n~¥%® (w, n~1z), where ® (w,z) = 3" c7a YV (Th(w)) x (z—

k) with Y € L?(Q) and x € C (RY) with support in the unit cube @
and such that fQ X(x)dx = 0. These functions are such that ||yl =
1Yl 120y Xl 2 (@) and E(fQ ®,,) =0 for any n € N, and ||V‘1>n||(Lg)d — 0 as
n — 00.

That there is no Poincaré-Wirtinger inequality means that solving Pois-
son’s equation (2.28) in the stochastic (ergodic) setting is complicated. Con-
trarily to the periodic case, it is not sufficient to ask that f € ker (—AS)J‘,
that is [E( fQ f) = 0. If we are given f € L2, then we see that there exists
V € L? such that —A,V = |S?1|f if and only if f belongs to the range of
—Ag. In the next section we consider the simpler Yukawa equation (2.29).

2.3.2 The Yukawa interaction
Let m > 0. If f € L2, we can define by analogy with (2.30)

Do, £) = |57 || (=2 %) 7 ]

2
e (2.36)

The operator (—As + m2)_% being bounded, D,, is well-defined on L2. To
set up our mean-field model for disordered crystals, we however need to
extend the quadratic form D,, to a larger class of functions. Formal manip-
ulations show that for a stationary function f

Dot ) =E ([ [ ¥ule =) 50) S o)

o

2
d:v) . (2.37)

Rd
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The second formula is more suitable for a proper deﬁnition of Dp,. We
claim that the function (W, * f) ( = Jga f( W (z —y) dy is well-
defined for all f € L, and is in L1 Th1s follows from the following elemen-
tary result.

Lemma 2.3.2 (Convolution of stationary functions). Let f € LL(L9) and
W e L? (RY) such that

loc

Z HW”LP(QH@) < 0

kezd

for some 1 < p,q,t < oco. Then the function
W) na)i= [ P W(e=) dy (239)

belongs to LL(L") with 1+ 1/r =1/p+1/q, and

W = fHLg(Lr) <C ||fHLg(Lq) Z ||W||LP(Q+k) (2.39)
kezd

for a constant C depending only on the dimension d. If 1 < p,q,r < 0o, we
can replace [|W || 1o 1x) by the weak norm [Wlgik| s in (2.39).

Proof. In order to prove the convergence of the integral in (2.38), we write

/rfwaWx— \dy—z/ F @) [|W (@ - )| dy

kezd

—Z/If 7(@),9) | [W (2 =y — k) | dy,

kezd

where we have used the stationarity of f. By the standard Young inequality
we have for a.e. x € Q and a.s.

H/If (@)9) | W (@ =y — k) | dy

< W (= B)ll o gy I (@), M oy
L™(Q)

and therefore

< AWCE =Bl ooy 11 e zay -
(L)

H/If (@)) | W (@ =y — k) | dy

The rest follows. The estimate with the weak norm [[W1g ||, » follows from
the generalized Young inequality [132]. O
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Since W,,, € L'(R?) and exponentially decaying when m > 0, Lemma 2.3.2
shows that W, * f € L! when f € L.. Now we can define

Dl )= / W s )

for any f in the space

Dy :={f€Ll|Wy*feL2}

which we call the space of locally integrable stationary functions with locally
finite Yukawa energy. It is easy to see that the space Dy in fact does not

depend on m > 0. It is a subspace of L! , with associated norm ||f| ;1 +

D1 (f, f)Y/?, and a Banach space for this norm.
Using Lemma 2.3.2, (2.33) and the known properties of W,,, we deduce
the following result.

Corollary 2.3.3 (Some functions of Dy). We have, in dimension d,

L3(LY) ifd=1,
L > Dy D L2(LY), Yg>1 ifd=2,
L2(L5/%) ifd=3.

When f € L? we have that both Y,, * f and W,, * f belong to L?, since
Y;,, and W,, are in L'(R?) and exponentially decaying when m > 0. Thus we
always have f € Dy and it is then an exercise to show that all the formulas
for Dy, (f, f) in (2.36) and (2.37) make sense and coincide. Indeed, we have
Vs f = [STH (= Ay + m2)71 foand Wyxf =4/|S%1 (A + m2)71/2
(2.40)

f.

2.3.3 The Coulomb interaction

As mentioned previously, the Coulomb potential can be seen as the limit
of the Yukawa potential when the parameter m > 0 goes to zero. More
precisely, as 0 < (A, +m?)71/2 < (=A, +m/?)7Y2 for all m > m/ > 0,
the function m — D,, (f, f) is non-increasing on (0, +o0), for any f € Dy.
It would therefore be natural to define the average Coulomb energy per unit
volume as the limit of D,, (f, f) when m — 0, but we will proceed slightly
differently.

To simplify some later arguments, we define the Coulomb energy per unit
volume by compensating the charge by a jellium background. This means
we introduce for a stationary charge distribution f € Dy

Dots. gy o= tim D (1= ([ 1) 12 (] 1)),
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together with the associated space

oo e () o+ () =

of the locally integrable stationary charge distributions f with locally finite
Coulomb energy (when compensated by a jellium background). We again
emphasize that Do C L} by construction.

When f € L2, the limit is finite if and only if f — E(fQ f) belongs to the

quadratic form domain of (—A,)~!, and we have by the functional calculus

Doty 1) = Jim Dy (£ -E( [ 1) ,f—E</QQf>>
<t (r-2(f))

For f only in D¢, the family (—Ag + m2)_1/2(f — E(fQ f)) is Cauchy in Lg
when m goes to zero and we still denote its limit by (—A)~1/2(f —E(fQ f

The following result means, in particular, that in the physically relevant
case d = 3, a stationary function f € LE(LG/ %) whose charge and dipole
moment in the unit cell @ vanish a.s., has a finite average Coulomb energy
per unit volume.

L3

Proposition 2.3.4 (Some functions in D¢). Let d < 3 and f be a function
of L2 (LY), withq=11ifd=1,q¢>1ifd=2 andq:g if d =3, such that

w):/Qf(w,x) dxr =0 and p(w):/Qxf(w,x) dr =0 a.s. (241)

Then, f € D¢.

Proof. For the sake of brevity, we only detail the proof for d = 3. Let f
be a function of L? <Lg) satisfying (2.41). As E(fQ f) =0, we have for all
m > 0,

on(r-5 (1) -2() - (/@giiywm@@

<CI, e +E[ X Ame],

)
keZ3, |k|>3

where

4 - 7m\k+y z| nd
mk (W) = /Qme (Tk (W), 9) f (w,z) dy da.
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Noticing that for all m > 0, (z,y) € Q x @, and k € Z? such that |k| > 3,
e—m\k—f—y—x\ _ e—m\k| + me—m\lﬂ(‘k +y— 1“ - ’k‘) < er—m|k\/2’
and using the fact that ¢(w) = 0 a.s. we obtain that
Am () = (1 +mlk))e ™ By, 1 (w) + Crp(w) as.,

with £ (e (@), 9) F (w,2)
Bm _ T W), Y W, T du d
,k(w) /Q><Q ’k—i-y—.%" Yy ax

and

[Cone(@)| < 2m2 (k| e ™2 £ (@), )l @) 1 (s )t )

Denoting by

1 1 ep-h  3(ep-h)?*—1h)?
F(k,h) = — [ = - + :

where ey = k/|k|, and by M(w) = fQ f(w,z) (3z -z — |z[?) dz, we have

B p(w) = /QXQ [ (7x (w)|,ky|)f(w,x) i

B [ w)y) flwz)ep-(y—a) , .
/QxQ K2 g

f (@) ) f (w,) [3(en- (y =) = ly = af”
_|_/ dx dy
QxQ

2|k

[ F0u(@)) f @) Py = ) dady

QxQ

q(w)g(m(w)) [q(W)p(Tk(w)) - q(Tk(w))p(W)} o

K| ||

p(w) - p(1s(w)) — 3p - exp(Ti(w)) - €
g

1 1

N [Q(Tk(W))ek M(w)ei;|4];|g(W)€k M(Tk(W))ek]

+ f(Tk (w)ay)f(wvx) F(kay_x) dx dy.
QxQ

It then follows from (2.41) that
B i(w) = /Q 0 [l (W), y)f(w,2)F(k,x —y)dxdy a.s.
X
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Thanks to the multipole expansion formula (see e.g. [102, Lemma 9]), there
exists a constant C such that for all k € R3\ {0} and h € R? with k+h # 0,

|F(k,h)| < lkg}:fih‘. Therefore,

[Bune(@)] < ORI 11£ (w0, Mg 1 (7 @) Mgy 2.

Consequently,

e—mlkl/2

Bl S ] <Cle | X gat X mtg— )

keZ3,|k|>3 kez3\{0} kezZ3\{0}

from which we infer that
, o—mlkl/2
Do (t=u([ 1) r-u([ 1)) <cunm, (14 ¥ w
Q@ Q@ kez3\{0}

for a constant C' independent of f. As

e—mlkl/2 —lz|/2
lim Z m? / ¢ dr < o0,
S

m—0t KeZA\ {0}

we finally obtain that f € D¢. O

The proof of Proposition 2.3.4 can be adapted to show that Do(f, f) is
the limit of the supercell Coulomb energy per unit volume (see Section 2.5
and [24]), for any fixed f satisfying the neutrality assumptions (2.41). It is
an open problem to prove the same for the functions f € D¢ which do not
satisfy (2.41).

2.3.4 Dual characterization

The purpose of this section is to provide a useful characterization of the
Yukawa and Coulomb spaces Dy and D¢ by duality. Let us introduce the
spaces of test functions

Ey = span {CDX,Y with Y € L>*(Q), x € S <Rd)} ,

and
E¢ = span {CDXY with Y € L>(Q), x € So <Rd } ,

where S (R?) is the Schwartz space, Sy (R?) = {x € S(R?) | ¥ € C*(R%\ {0})},
and

Py y(w,x) = Z Y (1i(w))x(z — k), a.s. and a.e.
kezd

The following says that Fy (resp. E¢) are dense in LY (resp. in LL N
ker(—Ay)t).
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Lemma 2.3.5 (Density of Fy and E¢). For any 1 < p < oo, the set Ey is
dense in LY and the set E¢ is dense in LE = {f cLf|E <fQ f) = 0}.

Proof. We prove that FE¢ is dense in E@’; the proof of the density of Ey in L%
is similar, even simpler. We first note that (L%)’ can be identified with 7
where p’ = (1—p~ 1)1 is the conjugate exponent of p. Indeed, as (L%) = Lé’/
then any ¢ in E@" defines a continuous form on L. Conversely, any ® in
(L) is also in (L2)' = LY. Therefore there exists ¢ € L2 such that for any

f € LE, we have <q)’f>(Z7;)/,Z€ =E <fQ gof) Taking o = p—E <fQ go), then
@ is in I¥ and for any f € LE,

s =5 )= )=([ ) [ )

which ends the proof of the identification. Let now ¢ € (L2) = ¥ be such
that

VY € L®(Q), Vx € So(RY), E (/ @‘I)X7y> = 0. (2.42)
Q

For Y € L*(Q), we denote by fy(z) = E(Y(-)¢(-,x)). The function fy
is in LP .(R%), hence it is a tempered distribution: fy € S'(R?). In view

of (2.42), we have for all x € Sp(R%),
<]:_1(fy)75<\>$/([@d)73(]gd) =0.
Therefore F~1(fy) is supported in {0}, which implies that

F )= cad®,

lo|<N

with N € N and ¢, € C. It follows that

fY(x) = Z Caz",

la|<N

with ¢, € C. As fy is in Lﬁ/mf(Rd), all the coefficients ¢, are equal to zero,
except possibly ¢p, and fy is a constant. We next notice that Y — fy is a
continuous linear form on LP(Q), therefore there exists Z € LP' () such that
for all Y € L>(Q2), we have E(YZ) = fy. It follows that for all z € R,
o(w,r) = Z(w) a.s. We know by Proposition 2.2.4 that any stationary
function independent of x is a.s. and a.e. constant. As E(fQ o(w,z)) =0,

we conclude that ¢ = 0, which proves that E¢ is dense in L® in view of the
characterization of density of [137, Theorem 5.19, p.107]. O
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We now verify that
YOyy € By, (—A+1)72®yy =B oy 1y (2.43)
and, similarly, that
VOyy € Bo, (—A)72 yy =B ayisnyy- (2.44)

Let Y € L>®(Q) and x € S(RY). Then

1 X(E)

1
(2m)% /1y K] | S4

Therefore (I)(—A+1)*1/2X,Y is in Fy and

(—A4+1) V2 =F 'K~

D at1)-1/2yy (@) = \/W Z (w) . Wiz — k —y)x(y) dy

kezd

\/WZ (Th(w /Wlx— x(y — k) dy

kezd

e (WD y)(z) = (A1) 72 Dy y,

where the last inequality follows from (2.40).
Similarly, for x € Sp(R?), we have that X vanishes in a neighborhood of

0 and
(—A+1)Vx=F! <K - X(K)> € So(RY).

5 K]

2m)
Therefore ®_xy-1/2, y is in E¢. To prove (2.44), we need to show that
_1 .
(_AS + m2) 2 ®va7ﬁ_>0(b(_A)_l/2X7Y m L§7

which, in view of (2.43), comes down to showing that

. 2
@, v —0 inLg,

where
S (L B L5
/|K|2+m2 K|
1
= m*Y(K)

K|\ 4 m? <\/|K|2 +m? 4 |K|>
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We have

[ P [ P N [/ Pewws
kezd

and, for k € Z,

1 d+1
Il L2 (Q4m) = HW <2 + || )Um

L2(Q+k)
1 H< d+1
= 24 |x >77 H
H 2+ |z]*H! Lo (Q+k) = "z (@+k)
d
1 d+1
< CW 2+ |zl Nm
= Lo (Q+h)
1

———5 Sup (2%l oo (rey -
1+|k|d+1 ‘Oé|§d+1 milL (R)

It follows that

1@y llzz < ClY @) sup 20l o o)

a|<d+

SCIY ey sup [10%mll L1 (ra) -
la|<d+1

It is easy to see that for any o € N, [0%m|| 11 (ray tends to 0 as m goes to
0, which concludes the proof of (2.44).

A straightforward consequence of Lemma 2.3.5 and (2.43)-(2.44) is the
following

Corollary 2.3.6 (Dual characterization of Dy and D¢). Let f € L!.

(i) If (=Ag +1)"V2f, seen as a linear form on Ey, is continuous on

(By, |-llz2), then f € Dy and Dy (f, f) = [S4 || (= As+m?)~V/2 |

2*
ES -

(i1) IfE(fQ f) =0 and (—Ay)~Y2f, seen as a linear form on Ec, is contin-
uous on (Ec, |[[|2), then f € Dc and Do(f, f) =[S H||(=2s) "2 f|[Fs

2.4 Stationary reduced Hartree-Fock model

We now define and study, using the tools introduced in the previous sections,
a reduced Hartree-Fock (rHF) model for crystals with nuclear charges ran-
domly distributed following a stationary function p > 0. We typically think
of p being of the form

pew.x) = 3 glw)x(a -k —nw))

kezd
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with [y = 1 and which describes a lattice of nuclei whose charges and
positions are perturbed in an i.i.d. ergodic fashion. However in this work we
do not want to restrict ourselves to u’s of this very specific form and for us
p is any non-negative stationary function in L. Our only restriction in this
work is that we do not allow point-like charges.

In Section 2.4.1, we define the minimization sets and the rHF energy
functionals associated with the Yukawa interaction of parameter m > 0 on
the one hand, and with the Coulomb interaction on the other hand. In
Section 2.4.2 we prove the existence of a ground state density matrix v, and
the uniqueness of the associated ground state density p,. We then show in
Section 2.4.3 that the m-Yukawa rHF model converges to the Coulomb rHF
model when the parameter m goes to 0. Finally, we prove in Section 2.4.4
that, in the Yukawa setting, any rHF ground state satisfies a self-consistent
equation.

In Section 2.5, we will prove that, still in the Yukawa setting, the rHF
model for disordered crystals we have introduced is in fact the thermody-
namic limit of the supercell model.

2.4.1 Presentation of the model

As in the usual rHF model for perfect crystals [24], the rHF model we propose
consists in minimizing, on the set of admissible density matrices, an energy
functional composed of two terms: the kinetic energy per unit volume and
the average Coulomb (or Yukawa) energy per unit volume. This leads us to
introduce the family of energy functionals

1

1
Eum (V) = 5 T (=A%) + 5 Dimlpy = s py = 1) (2.45)

with m = 0 for Coulomb and m > 0 for Yukawa. The sets of admissible
density matrices are defined by

’CM,Y={’Y€§1,1Q§7 Oévéla-S-,ﬁ(V):E</ u>,py—u€Dy}
Q

(2.46)
in the Yukawa setting, and by

’C%C:{’Ve@l,lmé’ Oévéla.S-,ﬂ(w)=E</ M>aPV_M€DC}
Q

in the Coulomb setting. The constraint Tr () = E( fQ u) (neutrality condi-
tion) must be added in the latter setting since the average Coulomb energy
per unit volume of a non globally neutral stationary charge distribution is
infinite (recall that in our definition of Dy, we have added a jellium back-
ground to enforce the neutrality condition). We also impose this constraint
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in the Yukawa setting for consistency. In our model it is not essential that
1 > 0 but we keep this constraint for obvious physical reasons.

The following lemma gives sufficient conditions on g > 0 for the sets
Ky and K, ¢ to be non empty.

Lemma 2.4.1 (Conditions for IC,y and IC,, ¢ to be non empty). If 4 € Dy,
then KC\y is non empty. If p > 0 satisfies the following conditions

(i) pe LY(LY),

(ii) there exists € > 0 such that |p (w)| < q(w) (3 —¢€) a.s., where q (w) =
fQ w(w, z)dz and p (w) = fQ zp(w,z)dz,
then IC, ¢ is mon empty.
Loosely speaking, the interpretation of the condition |p (w)| < ¢ (w) (3 — €)
is that the nuclei do not touch the boundary of ) too often.

Proof. Let p € Dy and p := E(fQ w) a.s. and a.e. It is clear that there exists
a self-adjoint operator v € &, ; such that 0 <~y <1 ass. and p, = p. We
can take for instance a free electron gas with constant density p, that is,

2/d
dem™\""
Bl '

Y= 1(,00,5] (—A), with &= <

This state is obviously ergodic since it is fully translation-invariant. Moreover

it satisfies 2/d
d d(2m)? 1
Tr (—=A - +2/d.

Besides, p — u € Dy and therefore v € K, y.
Suppose now that p satisfies conditions (i) and (ii) of the statement. Let
p be the stationary function defined on @ by

0 if ¢g(w)=0
w,T) = g )\ 2
Pl ) % X < d(i(f) ) otherwise.

Here d(w) = dist(p (w) /¢ (w),0Q) and x is any non-negative radial function
of C®(R%) with support in B(0,1/2), such that fQ x? = 1. We check that
p € L2(L%) N L3, where ¢ satisfy the conditions in Proposition 2.3.4, and
Ve € H L. Therefore, by the representability Theorem 2.2.16, there exists
a self-adjoint operator v € &;; such that 0 < v < 1 as. and p, = p.
Moreover, fQ (p(w,z) — p(w,z)) de = 0 and fo(p(w,x) — p(w,z)) de =
0. It follows from Proposition 2.3.4 that p — u € D¢, and therefore that
veKuc. ]
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2.4.2 Existence of a ground state

Now that we have properly defined the rHF energy, it is natural to look
for ground states, that is, minimizers of &, m on K, y/c. The ground state
energy of a disordered crystal is defined by

I;L,m = inf {E,u,m(’}/)a v E IC;L,Y} (2'47)

with m > 0, in the Yukawa case, and by

IM,O = inf {gu,O('Y)a aS ICM,C} (2'48)

in the Coulomb case.

Theorem 2.4.2 (Existence of ergodic ground states). Let 0 < u € L. If
Kuy (resp. Kuc) is non empty, then (2.47) (resp. (2.48)) has a minimizer
and all the minimizers share the same density.

The proof of Theorem 2.4.2 is based on the weak-compactness of K, y/¢
(Proposition 2.2.12), and on the characterization of the spaces Dg/y by
duality (Corollary 2.3.6). We recall that in Lemma 2.4.1 above, we have
given natural conditions which guarantee that K, y/c is non empty.

Proof. Let m > 0 and let (7,) be a minimizing sequence for I, ,,. As the
functional &, ;,, is the sum of two non-negative terms, these two terms must
be uniformly bounded. Since Tr (—A~,,) and Tr (y,) = E(fQ ) are bounded,
we can apply Proposition 2.2.12 and extract a subsequence (denoted the same
for simplicity), such that ~,, —, v, with all the convergence properties of the
statement of Proposition 2.2.12. In particular, we have

T (~2y) < liminf Ts (~A,)  and ﬂ(7)=E< / u>-
n o Q

Similarly, we know that 2, 1= W, * (p,,, — p) = (=As +m?)"V2(p,, — ) is
a bounded sequence in L?. Thus we can extract another subsequence such
that z, — z weakly in L2.

/

Passing to weak limits using that p,,, — pin L;Jrz d, it is readily checked

that for any ® € E¢/y

_1
lim (z,,®);. = lim <p% — I, (—AS + m2) 2 <I>>

n—o0 s n—o00 Eé/vaC/Y
9 _1
:<p — 1y (= Ay +m?) 2<1>>
v (=8, By v Boyy
1
={((=As+m?) 2 (p —,u,<I>> :
(o) o —m@)
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Hence

_1
<Z7CI)>L2 - <(_A5 + m2) ’ (p“/ - :U')?q)> .
: E¢ y-Eery

Therefore, using the lower semi-continuity of the L2-norm, we obtain

|2 +m3) o, — )

2(p,, — M)‘

et A2
= 170 < mine (-4

We deduce from Corollary 2.3.6 that p, — u € Doy and that

L3

Thus, 7 is a minimizer of (2.47) (resp. (2.48)).

Let us now prove the uniqueness of the minimizing density p,. Assume
that 7 and 2 are two minimizers of (2.47) (resp. (2.48)). A simple calcu-
lation shows that

Y1+ 1 1 1
gu,m (T) = §5u,m (71) + §5u,m (72) — ZDm (Pm = P2y Py — p’yz)

1
= Lum ZDm (p’Yl = P2 Py T 10“/2)-

As 1, ,, is the infimum of &, ,, and as (1 +72)/2 belongs to the minimization
set KC,, c/y'» we deduce that H(—As—l—mQ)fé (P = Pya) Iz = 0. Thus (—As+
m2) 72 (py, — pry) = 0. For all ® € Eg, (=A, +m?)Y/2® € Eg and

_1 1
<(_As + mZ) ? (p’yl - 10“12) ) (_As + m2)2(1)>L2 = 0.
Hence, IE(fQ(p71 —py,)®) =0forall ® € Ec. As E¢ is dense in L;+d/2ﬂ{1}l
(see Lemma 2.3.5) and as, in addition, IE(fQ(,oﬂf1 — py,)) = 0 by the charge
constraint, we conclude that p,, = p-,. O

2.4.3 From Yukawa to Coulomb

In this section, we prove that the ground state energy of the Yukawa prob-
lem converges to the ground state energy of the Coulomb problem as the
parameter m goes to 0. The result essentially follows from our definition of
the Coulomb energy Dy as the limit of D,, when m — 0.

Theorem 2.4.3 (Convergence of Yukawa to Coulomb). Let 0 < € L} be
such that IC,,c # 0. The function m — I, is decreasing and continuous
on [0,+00). In particular, we have

lim I m:I 0-
m*>0+ ll‘L7 )LL7

Moreover, if for each m > 0, 7, is a minimizer of (2.47), then the family
(Ym)mso converges, up to extraction, to some minimizer v of (2.48), in the
same fashion as in Proposition 2.2.12.
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Proof. That m + I, is decreasing and continuous on (0, +00) is easy to
check (the strict monotonicity follows from the existence of minimizers). For
f € Dc such that E( [, f) = 0, we have Dy, (f, f) < Do(f, f) for all m > 0.
It follows that

VW € IC,LL,C’ Vm > 0, E,u,m(ry) < 5#,0(7) < 00,

and therefore that
Iu,m < IM,O- (249)

This proves that lim,, o+ I, m < 1,0-

For m > 0, we denote by 7, a minimizer of (2.47). We deduce from (2.49)
that there exists a positive constant C such that, for all m > 0, Tr (—A~,,) <
C and |[(—A +m?)~2(p,, — )| ;> < C. Reasoning as in the proof of
Theorem 2.4.2, we can extract a subssequence (Ymy ) ken With my N\, 0, such
that there exists v € KC with

Tr (v) = [lpllp,  Tr(=Av) <liminfTr (=Ayp, ),

k—o0

H(—As)’% (P —M)H

o _1
, < liminf H(—As +m2) 2 (,0%% - ,u)‘

L2 T koo L2’

This proves that v € K, ¢ and that

which concludes the proof of the theorem. O

2.4.4 Self-consistent field equation

In this section, we define the mean-field Hamiltonian H = —%A + V asso-
ciated with the ground state for m > 0 (Yukawa interaction), and we prove
that any ground state of (2.47) satisfies a self-consistent field equation. The
same holds formally in the Coulomb case but, unfortunately, we are not able
to give a rigorous meaning to the Coulomb potential V. For this reason we
consider a fixed parameter m > 0 in the rest of the section.

We introduce the stationary mean-field potential V' defined by

Viwz) = [ You(z=y) (pm — p) (w,y) dy, (2.50)

R
where py, is the common density of the minimizers of (2.47). The follow-
ing says that, under the appropriate assumptions on u, V' is a well-defined

stationary function such that the associated random Schrédinger operator
H = —%A + V is also well defined.
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Lemma 2.4.4 (Mean-field random Schrédinger operator). Let d € {1,2, 3},
m > 0and 0 < p € LA Dy, Let pm be the (unique) ground state
electronic density for the Yukawa minimization problem (2.47), obtained in
Theorem 2.4.2, and V the associated mean-field potential defined in (2.50).

Then we have

L3(L™>) ford=1,
Ve LE(L>) for d =2, (2.51)
LY3(L=) N LA(LS)  ford =3,

and the random Schridinger operator H := —%A +V is almost surely essen-

tially self-adjoint on C2°(R?). In dimension d = 3, if pu € L§/2 (Ll), then
we also have
V_e b2 (2.52)

Let us emphasize that H is a uniquely defined operator since p,, is itself
unique. Note that under the sole assumption that u € L§+2/ 4 in dimensions
d = 1,2 we have u € Dy by Corollary 2.3.3. In dimension d = 3, the
additional hypothesis pu € L2/2 (L') ensures that u € Dy, by Corollary 2.3.3

and the fact that LE/Q (Ll) N L§/3 C Lz (L6/5).

Proof. As we know that p,, € it (4.1) and (2.52) follow from Lemma 2.3.2
and the fact that V = ¢ W, % (Wi, % (pm — ) with Wy, % (p — i) € L? since
pm — 1 € Dy. We know from [34, Proposition V.3.2, p.258| that —%A +V
is essentially self-adjoint on C2°(R?) when V € L7(LP) for some p > 2 and
r > dp/(2(p — 2)). In our case we can apply this with (p,r) = (3,3) for
d=1, (p,r) = (5,2) for d =2 and (p,r) = (21,5/3) for d = 3. O

The following now gives the self-consistent equation satisfied by a mini-
mizer .

Proposition 2.4.5 (Self-consistent equation). Let d € {1,2,3}, m > 0 and
0<pue L§+2/d. Suppose also that p € L§/2 (Ll) if d = 3. Then there exists
er € R, called the Fermi level, such that any minimizer ~,, of the Yukawa

minimization problem (2.47) is of the form
TYm = 1(—oo,aF)(H) + 0,
for some ergodic self-adjoint operator 0 satisfying 0 < 6§ < 1.y (H).

Since H is uniquely defined, we deduce that two different minimizers need
to have different operators ¢§’s at the Fermi level ep. In particular, when ep
is not an eigenvalue of H, we deduce that ~,, = 1(_OO,€F)(H) is the unique
minimizer of (2.47). We will see in Corollary 2.4.6 below that this is indeed
the case under the assumption that p € L®(Q x RY).
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Proof. As p € Dy, (2.47) has a minimizer v by Theorem 2.4.2. The Eu-
ler inequality associated with the convex optimization problem (2.47) then
reads:

1
¥ e Ruy, 5T (=AW =) + Dimlpy = pyopy — 1) 2 0.

For ¢ € R4, we set

, 1
E(q) = ;,rgc (52 (=A(W =7)) + Dim(py — pys 0y — u)) .
Tr(v')=q
P,Y/EDY

It is easily checked that the function E is convex on R, hence left and right
differentiable everywhere. Also, for any

e[ (= (fr) o) # (2 () +0)
Q Q
where E'(E( fQ w) —0) and E'(E(/, o #) +0) respectively denote the left limit

and the right limit of the non-decreasing function E’ at E( [, 0 ), we have

1
—Tr (=A@ = 7)) + Din(py — py, py — 1) —erTr (v —7)

2
- -2 () (w0 -5([) =
(2.53)

for any ergodic operator 4/ € K such that p,, € Dy. As p, € Dy, V, =
Y xu € L§+d/ 2, and py € L;+2/ 4 for any 7 € K, the above inequality
actually holds for any 7/ € K. In addition,

D (py = pyspy — 1) =E (/Q Vipy — Pv))

in Ry U {+oc}. Taking now 7' = 1(_ ..)(H), which belongs to K by
Proposition 2.2.14, and using Proposition 2.2.15, leads to

1
0< ;Tr (=AG0 =) + Dim(py = pyr 0y — 1) —erTr (v — )
<~ (|H —ee| 20y = 7)2|H —ex'?) <0,

Hence, v = 7/ + § with § as in the statement. O

The following result deals with the special case of € L™ (Q X Rd), for
which we can prove uniqueness of v,.
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Corollary 2.4.6 (Uniqueness of the minimizer). If p € L* (Q X Rd), then,
for each m > 0, the density pn, is in L™ (Q X Rd), and

Ym = 1(—oo,5F)(H)
is the unique minimizer for (2.47).

Proof. That p,, € L* (Q X Rd) is a consequence of Proposition 2.4.5 and of
the Feynman-Kac formula (2.18). This implies that V € L> (2 x R?). In
this case the density of states of H is known to be continuous [20], which
shows that ep is (almost surely) not an eigenvalue [125]. Therefore 6 = 0
and -, is unique. O

2.5 Thermodynamic limit in the Yukawa case

The purpose of this section is to provide a mathematical justification of the
Yukawa model (2.47) by means of a thermodynamic limit. So far, we did
not manage to extend the results below to the Coulomb case.

Let us quickly recall that the thermodynamic limit problem consists in
studying the behavior of the energy per unit volume (as well as, possibly, the
ground state itself and some other properties like the mean-field potential,
etc) when the system is confined to a box with chosen boundary conditions
and when the size of the box is increased towards infinity.

For a perfect (unperturbed) crystal, the existence of the limit in the
many-body case goes back to Fefferman [47], after the fundamental work
of Lieb and Lebowitz [109]. A new proof of this recently appeared in [67].
However, for the many-body Schrédinger equation, the value of the limiting
energy per unit volume is unknown. For effective theories (Thomas-Fermi
or Hartree-Fock for instance), it is often possible to identify the limit and to
prove the convergence of ground states. In [114], Lieb and Simon prove that,
for the Thomas-Fermi model, the energy per unit volume and the ground
state density of a perfect crystal are obtained by solving a certain periodic
Thomas-Fermi model on the unit cell of the crystal. The same conclusion
has been reached by Catto, Le Bris and Lions for the Thomas-Fermi-von
Weizsicker model [35], and for the reduced Hartree-Fock (rHF) model [36]
we focus on in the present work.

In the stochastic case, Veniaminov has initiated in [153| the study of
the thermodynamic limit of random quantum systems, but with short range
interactions. The case of a random Coulomb crystal was recently tackled by
Blanc and Lewin in [15]. Blanc, Le Bris and Lions had already considered the
stochastic Thomas-Fermi and Thomas-Fermi-von Weizsécker models in [14],
for which they could also identify the limit.

Here we follow [24] and we consider the so-called supercell model. We
put the system in a box I'y, = [~L/2,L/2)? of side L € N\ {0}, with
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periodic boundary conditions. When m > 0, we show that the ground states
converge, when L goes to infinity, to a ground state of problem (2.47) (up
to extraction and in a sense that will be made precise later).

Let m > 0 be fixed for the rest of the section. We introduce the Hilbert
space

L?)er (FL) = {4,0 € L120C (Rd) ‘ ¥ (LZ)d —periodic} .

The Fourier coefficients of a function f € L2, (I'y) are defined by

per

d
1 : 2
ke (f) == (z) e BT dy, VK € <—7TZ> .
L2 Jryg L
We denote by —Ay, and P;r, 1 < j < d, the self-adjoint operators on
L?_ (T') defined by

per

2

d
ck (~ALH) = |KP ek (1), and ek (Piof) = kick (). VK €<fz> |

For k € Z%, we denote as before by Uy, the translation operators on L120c (]Rd)
defined by Ui f (z) = f (z + k). For any f,g € L2, (1), we set

per

Dy r(fr9) = ‘Sdil‘ <(_AL + m2)_% f(=Ar+ mz)—% g>L2 (1)

- Y BELE Tk = [ [ Vale @t ey
d’K’2+m2 K K Iy JR4 " ‘

Ke(2%27)

Denoting by &1, (resp. Sp) the space of the trace class (resp. bounded
self-adjoint) operators on L%er(I’ ). The set of admissible electronic states
for the supercell model is then

Kr = {’YL €61.NSL, 0y, <1, Trpp 1) (“AL7L) < OO} :

For any w € €2, we denote by pr(w,-) the (LZ)%periodic nuclear distribu-
tion which is equal to u(w,+) on 'z, and by Eﬁm the (w-dependent) energy
functional defined on K, by

1 1
5lim(w7 VL) = §TI‘ L2..(TL) (_ALVL)—i_iDva (p“/L _IU'L(w7 ) y Pyr _IU'L(w7 ))

per

Let er be as in Proposition 2.4.5. For any w € (), the ground state energy
of the system in the box of size L with Fermi level e is given by

Iﬁ,m,ep (w) = inf {ﬁ'im(w,’yL) —eplr L2, (TL) ("YL) , YL € ICL} . (2.54)
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Proposition 2.5.1 (Existence of ground states for the supercell model). Let
p € L2. For each L € N\ {0}, (2.54) has a minimizer, and all the minimizers
of (2.54) share the same density.

Proof. The proof follows the same lines as the proof of |36, Theorem 2.1|, re-
placing the periodic Coulomb kernel by the periodic Yukawa kernel Yy, 1, (x) =

On the other hand, the ground state energy of the full space ergodic
problem with Fermi level ef is defined by

Iu,m,ap = inf {gu,m(’)/) - EFE (7) , V€ ICY}a (255)

where &, , is given by (2.45), and
Ky ={ye&,;nS, 0<y<1las, py—pu€cDy}

(the neutrality constraint has been removed compared to KC,, y defined before
in (2.46)). It is a classical result of convex optimization that (2.47) and (2.55)
have the same minimizers (see (2.53)).

Theorem 2.5.2 (Thermodynamic limit for m > 0). Let u € L?. We have

Lne@)

lim mer L (Q). (2.56)

L—oo LA

Our proof also gives the convergence of minimizers for (2.54) towards
those of (2.55), in a rather weak sense. More precisely, the operators ~}
defined by (2.68) and (2.67) weakly-* converge to a minimizer v for (2.55),
up to extraction of a subsequence. See Remark 2.5.8.

To prove Theorem 2.5.2, we first establish preliminary estimates in Propo-
sition 2.5.3. Then, we prove a lower bound in expectation in Proposi-
tion 2.5.4, and an almost sure upper bound in Proposition 2.5.6. We then
conclude the proof of Theorem 2.5.2 using Lemma 2.5.7.

In order to adapt our proof to the Coulomb case, we would need some
estimates on the Coulomb potential V7, in the box I'y,. It is reasonable to be-
lieve that screening effects will make (V7,) bounded in, say, L*(€, L . (R?)).
For a very general arrangement of the nuclei, bounds of this type are known
in Thomas-Fermi theory (see [14, Theorem 7|, which is taken from Brezis’
paper [21]) and in Thomas-Fermi-von Weizsécker theory [35, Theorem 6.10],
but they have not yet been established in reduced Hartree-Fock theory. Prov-
ing such bounds is of considerable interest, but it is beyond the scope of this
study.

Proposition 2.5.3 (Upper bounds). Let u € L% and let v (w) be a mini-
mizer of Iﬁmﬁp (w). Then, there exists C > 0 and a sequence of integrable
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random variables (Z1) converging to some Z € L' (Q) a.s. and in L' (),
such that

Ik (W) + Dir(py, (W), 0y (W) < CLYZL (W) as., (2.57)

HyMGER

E (Tr 13,00 (1= ALz ) +E(Dr (0, = 1 pyy — 1) ) < C LY (258)
for all L € N\ {0}.

Proof. Taking 77 = 0 as a trial state in the minimization problem (2.54), we
obtain that, almost surely,

It (w) 1 1
Hy1m,E
—a— = gpalmr (e (@, ) pn(w,) < 5521 (), (2.59)

where Z; = L™ fFL u? converges to E(fQ ©?), a.s. and in L' (Q), by the
ergodic theorem. Besides, for any a € R and any +} € Kr,, we have

TrL%)er(FL) ((_AL - Oé) 7}/) Z _TrL%)er(FL) (( - AL - Oé)_) :

The trace of ( —Ap — a)i is given by

Tz, () <( —Ap — a)_) = Z 1\k|2—a§0 <a — ‘k’2> .

27 7d
ke2rz

The Riemann sum L™ Y, x4 1\k|2—a<0(0‘ — |k|*) converges to
2 >

/ Ly aso (@ = [KP) dk = —Ca™3,
Rd -

where the constant C' > 0 depends only on the dimension d. Therefore, the
sequence L™Tr ((—=Ar — «)_) is bounded and

Trpz, (rp) (-Ap —a)qy) = —CLY, (2.60)

where C' depends, in general, on « and d, but not on 7. The bounds (2.57)
and (2.58) follow from (2.59) and (2.60). Indeed, by (2.59), we have

Trrz o) (A —ep)yL) + DL (pyps ) < CLZr. (2.61)
As Dy, 1, (P, Py, ) is non-negative, we deduce that
Tr 1z 0, (FA —ep)yr) < CLZp (2.62)
and, using (2.60),

Dm,L (p"/L?p’YL) < CLdZL’
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which concludes the proof of (2.57). Next, taking the expectancy of (2.61)
and using that E(Z;) = |||, is independent of L, we obtain

E(Tr 1, () (A = 0)72)) + E (Dt (g p20)) < CL.
Thus

E (T 1,0y (1= A7) ) + E (Dot (93, p2,)

<coLd+ (1+ep)E (TT L2,(TL) (VL)) :

(2.63)
Using now (2.60) with v, =~z and a = —1 — 2¢, we get
(I +er)Tra ) () < Trpa vy (FAL —er)ye) + CL?
<CLZ, +CL, (2.64)

where we have used (2.62). Taking the expectancy of (2.64) and combining
it with (2.63), we conclude the proof of (2.58). O

Proposition 2.5.4 (Lower bound in average). Let u € L2. Then

Eimer () S (2.65)

lim inf Td > Tumer-

L—+oc0

The following definition introduced in [14]| will be used repeatedly in the
proof of Proposition 2.5.4.

Definition 2.5.5 (The tilde-transform). For a function g : Q@ x R* — C and
L € N, we call the tilde-transform g of g the following function
- 1
g(w,z) = Td Z 91— (w),z+ k) a.s. and a.e. (2.66)
k‘eFLﬁZd
We can now write the
Proof of Proposition 2.5.4. Let ~yr(w) be a minimizer of (2.54) and set
- 1 X
i) = 27 Y V()L (2.67)
kel pnzd

Notice that p5, = p,, where the latter is the tilde-transform defined in (2.66).
For any L € N\ {0}, we define the operator

v, . L?(RY) — L?(RY)

' 2.68
¢ = 1Ir,yLer, (2:68)
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where @, is the (LZ)d—periodiC function equal to ¢ on I'z,. It is easily checked
that ] is self-adjoint and that 0 <~} < 1. Thus, the family (v} ) is bounded
in L (Q,B). Up to extraction of a subsequence, there exists an operator
v € L™ (2, B) such that 7} converges weakly-* to . Moreover, 7 is self-
adjoint and 0 < v < 1 a.s. Besides, 7} (w,z,y) = 71 (w,z,y) a.s. and a.e.
on ) x I', x I'p,. In the following, we will show that v € Ky and that

E(IL (.
Eum (7) — erTr (7) < liminf E (Limer ()

Lo i (2:69)

leading to (2.65).

Step 1 The operator v is ergodic. By density argument, like in the proof
of Proposition 2.2.12, it is sufficient to show that for all u € LY(Q), ¢, €
C>(R?) and R € 74,

E(u( (v(7r(w)) = UrY(@)UR) ¢,9) 1) = 0. (2.70)
Let u, ¢, 1 and R as above and L € N. We have

AL(Tr(W)) — UrL(W)UR
1

=7d Z UYL (T—k+r(W)) Uy — Z Up+rYL(T—k (W) Uiy g
kel Nz kel nzd
1 N .
= Td > Unorr@)Ui = Y Uik r(W)U;
kel Nz ke(TL+R)NZ4
1 *
= 7d > Uk (m—k4 5 (@)U,
ke(PLA(TL+R))NZ4

where AAB := (A\ B)U (B \ A). Hence, for L sufficiently large, we have

|E (u{(72.(r") = UrRVLUR) @, ¥)12) | = B (w{(3L(7r") — URVLUR) L, ¥L) r2ry)) |

FLA(TL + R)|
S 7T [ull 2o 1ol 2 191l 2 -

The left side converges to E (u((y o 7r — UrYU},) ¢, %) 12), and the right side
decays as L™1. Thus, (2.70) is proved.

Step 2 We have

E (Tr 12,(Tr) (’YL))

L300 L 2.71)
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Thanks to the estimate (2.58), for any x € W °°(R?), there exists a constant
C such that for all L € N\ {0}, we have

d
B (Tr (x7))| + D [E (Tr (xPALPix))| < C, (2.72)
j=1

Indeed, let I C Z%, with |I| < oo, such that supp(x) C By = Uicrlgti. We
have

E(Tr (x72x)) = E ( /B 1 XQP%>

< Wlequ B ([ o)

= % ||X\|ioo(Rd) >, ) E (/Q—',—H—lc p%>

€l kel'pnzd

- % Il () D E </m+z‘ '%>

el
1 2
= 7a Xl (ray T E ar
L
1
= 3 I ) I (T oy () - (279)

Similarly, for 1 <5 <d

~ 1
B (T (P71 P500) < g Wy 112 ([ o)

L

1
= 7 I ) I E (T 22 ) (—A27) ) -
(2.74)

The right hand sides of (2.73) and (2.74) are both bounded in view of (2.58),
which proves (2.72).
Following the proof of Proposition 2.2.12, we can show that

BT () = Jim B (u [ pn?) (2.75)

for all u € L>=() and all x € L(R?). Choosing u =1 and y = 1, we get

Tr(y)= lim E (/QWJ :
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Finally, we remark that

E(/Czpwa):E(/C?ﬁvL):%E /Q Y. puliz+k)de

]CEFLﬂZd

1 1
=zt </r ”“) = 2B (T ().

which concludes the proof of (2.71).

Step 3 The sequence (pz, ) converges weakly to p~, in LY*2/4(Q, LIIOJEQ/d(Rd)),
By (2.75), we obtain

Jin ([ sy i@ de) =B (u [ gy (o2 ds).

for all w € L>°(Q2) and all x € C° (Rd). To proceed as in the proof of Propo-
sition 2.2.12, we only need to show that (ps, ) is bounded in L'+%/4 (Q, L**2/4(By)),
independently of L, for any By = Upc(Q + k), with I C Z% such that
|I| < oo. This bound now follows from the convexity of the function
x +— x'%/¢ the Lieb-Thirring inequality in a box [50] and the estimate (2.58)

d+2 1 d+2
E / o5 d> < —E </ p d> 2.76
([ ) <[ Il (2.76)

kel
<ol E (Tr LgerL(d—AL’YL)> . E <Tr 12, (M)>

Ld ¢

Step 4 We have

K <TTLger(—AL7L)>
Tr (—Av) < llLHi>loIcl>f 7d .

As v} converges weakly- in L (£, B) to v, we can argue like in the proof of
Proposition 2.2.12. Indeed, Let (¢,)nen be an orthonormal basis of L?(Q)
consisting of functions of H}(Q). We denote by ¢, 1, the LZ-periodic func-
tion defined on I'z, by

enL(x) =pn(x), ifzeq,
on,L (v) =0, ifz el \Q.
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Note that (Uy@n,)rer,nzd,nen is an orthonormal basis of L2, (I). By the

E ((PjyPjpn, ¢n)) = E (v (—i0s;0n) , —i0x;0n))
= Jlim E (7, (=i, pn) , —i0s;0n))
= lim E (71 (~i0s,0n.1) , ~i0s,pn.5))
= lim E (P 13LPj,1¢n.1, ¢n,L)) -
L—o0o

For any n € N, L € N* and 1 < j < d, the terms E (P; .Y.Pj,.¥n,L, ¥n,L))
are non negative. Therefore, by Fatou lemma in ¢/!(N), we have

I (PjyFy) < liminf ZNE (Pj,LLPj 1m0 ¢n,L)) -
ne

Thus

d
Tr (—Avy) < hLHi,ioréf Zl ZNE ((Py.LALPj,Ln,Ls On,L) 12(Q))
Jj=1ne

d
1
< lim inf Z Z Ta Z E ((P..vL P, LU on,n, Ui on,L) 12(Q))

L—oo <
j=1neN kel Nz
14
< lim inf -5 Z E <Tr [2..(T1) (PJ',LVLPJ}L))
j=1

e 1
< liminf EE (Tr LgeT(FL)(_AL’YL)) )

L—o0

where we have used that the operators P;; commute with the translations
Ui and that the semi-group 7 preserves the probability measure.

Step 5  We have

o E<Dm,L(p'\/L — BL, Py — m))
Diy(py = s py — p) < lim inf 7d

(2.77)

We denote by fr = p,, —pr and f = py, — p. It follows from a simple
convexity argument that for all k € Z¢,

¢ (H (-8 +m?) i ;(mk))
= % REFZLmzd H (=Ap+m2) % fr(rr (), + R)‘ ;(ax(mk))

1
< —T
= 7d </p

(—AL+ m2)7% fL‘2> .
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L2 1
(—AL+m2)_§fL‘ Z‘Sdfl‘ D1, (fr, fr),

J,

we obtain by (2.58) that for all k € Z¢,

: 51
< —F

H (~Ar+ m2)_% fL‘ L2Qx(Q+k) — L4

(Dm,L (fLny)) <C.

Therefore, there exists a function z € L?(Q, L2 ,;(R%)) such that, up to

extraction, (—Ag +m?)~/2f converges weakly-* to z in L*(Q, L2 (R%)).
By the weak lower semi-continuity of the L?-norm, we have

1?2 E (D, r(fL, fL))
E( [ 22) <timinfE (| (-as +m?) 7% fr < lim inf ——mL L L))
</QZ ) = Lo ( (A ) = il gy ) = it =g
We are going to show that z = (=As+m?)~'/2 (p, — ), which will conclude
the proof. To do so, by density, we just need to check that for any u €
L1*4/2(Q) and x € C° (RY),

_1 . _1
lim E(u/ X(_AL+m2) 2 fL) :E(u/ <(—A+m2) 2X> f)
L—oo R4 Rd
(2.78)
Let w and x be such functions. Reasoning as in Step 1, we notice that the

tilde-transform ji, converges weakly to p in L'T2/4(Q, LllotQ/ d(Rd)). Then,
we proceed in two steps. First, we show that

/RdX(—AL-i-WQ)_% fLZ/RdnJEL,

where 7 = (=A 4+ m?)~/2y. Recall that, for any h € S(R%), the func-
tion defined by hy, (z) = Zke(LZ)d h(z —k)is in L2, (D'p) with ¢k (hy) =

per

117



(27 /L)%2h (K). For L sufficiently large, we therefore have

1 .

/X(—AL+m2)_§fL:/ X(—AL+m2)_%fL
R rL

)

Il
B
m
[\ ¥
¥ ]
N
IS
)
=t~
—~
)
h
N~—
)
=
/N
|
>
™~
+
3[\.’)
SN—
|
=

rezmza \/|K[2 4+ m?

Next, using the fact that n € S (]Rd), the weak convergence of fr, to f in
LY2/4(Q, Lllotz/d(Rd)), and the bound (2.76), we prove that

E<u/RdnfL> L:LE<“/RJ”0>’ (2.79)

which concludes the proof of (2.78), hence of (2.77). For this purpose, let
e >0. Asn € S(RY), then the series 3, sd 7l Lo (&) is convergent for any

1 < p < +o0. Therefore, there exists Ry > 0 such that

g
o mllparziigin < 30"

kezd
|k|>Rg—1

. By the weak
L2/4H1(Qx (Q+R))

convergence of f7, to f in L2/d+1(Q,L120/Cd+1(Rd)), there exists Ly > Lg such

that VL Z L1
E(“/ UfL>—E<U/ 77f>
B(0,Ro) B(0,Ro)

where €' = HuHLd/2+1(Q) SUPRezd, LeN\0 HJEL‘

< (2.80)

Wl m
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By Hoélder inequality, we have

( /Rd\B(OvRO)nfL) < % o(nf k)

kezd
|E|>Rg—1

< 7 Nullgaaen o g || 2

= L2/ 4H1(Qx (Q+))
|k|>Rg—1
3
< (2.81)

As the latter inequality holds for f as well (by the weak lower semi-continuity
of the norm), we also have

E u/ nf | << (2.82)
R4\ B(0,Ro) 3
From (2.80), (2.81) and (2.82), we conclude that for any L > L;
o o) 2 f ) -
R4 R4
which concludes the proof of (2.79). O
Proposition 2.5.6 (Almost sure upper bound). Let u € L2. Then,
It w
lim sup wg() < Iymep, .. (2.83)
L—oo L

Proof. We first prove (2.83) assuming that p € L™ (Q X Rd); we then deduce
the general case by an /2 argument using (2.57) and (2.60). Let v be a
minimizer of (2.55). By the ergodic theorem, there exists QL C €, with
P (QL) = 1, such that on ),

m — = m — . .= . .
Loo LA I‘va va b L eo LA FLpPJVPJ QpPJ“/PJ t

(2.84)
for any 1 < j < d, and
|(-actm2) 4o, - ) 1 :
P Ll e = H (=As+m?) " (py = ”)‘ Lz’
(2.85)

Let wg € QL be fixed for the rest of the proof. Let 0 < xr < 1 be a sequence

of localization functions of C2° (Rd), which equals 1 on I';,_1, has its support
in 'z, and satisfies |[Vx| < C. For L € N\ {0}, we introduce the operators
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79 L2 (RY) — L? (RY) and 7 : L2, (Tr) — L2, (T'L), whose kernels are

per per

given by

VP (,y) = XL ()7 (wo, 2, 9) xz (y) and vz, (w,y) = Y A (@+4,y+k).
jke(Lz)?

We first check that the charge per unit volume of vy, converges to the one
of v. We have

1 1 ,
= — — —-1). 2.86
Ld/FLPv+Ld/FLPw(XL ) (2.86)

We recall that as p € L>®(Qx R%), then p, € L= (2 x R?) by Corollary 2.4.6.
It follows that the second term of the RHS of (2.86) goes to 0 since

o f, i< 5
—= [ mIxz—-1)| =+ p
Ld T, ’Y( L ) Ld AT,y Y
d—1
< O oyl e ey 72 0-

Therefore, using (2.84), we conclude that

1 1
lim — = lim — =E . 2.87
Jim 72 / pre = Jim 72 / P ( /Q Pv) (2.87)

Next, we check that the kinetic energy per unit volume converges as well. It
holds that

Tr 1, (“AL7) = Tt (=A9)

I
M=~

Tr (Pjxry(wo)xLP;)
1

<.
Il

I
M~

(I7y + 20+ 11),

1

<.
Il

L 7L L -
where Ly, I and I75 are given by

Ify =Tr (xe Piy(wo)Pixe), Iy = —Im (Tr (x2Py(wo)(z,x1)))

and
Ifg = Tr ((82;x2)7(w0)(Or, xL)) -
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We first show that the term L= jLJ converges to Tr (P;yP;). Indeed,

1 1
Td (Ljx = Tr (Ir, Pyy(wo) Pilr)) = —Talt <1FL V1= X2 P (wo) Py /1 — X%1F>
S (1=x2) PPjv(wn) P,
Ld FA\LL_ 7 (wo) Py
we conclude as before using (2.84). We now prove that the term L= jL73
vanishes at infinity. We have

1 ; 1 2
ﬁljﬁ ~Id /FL\FL (aijL) Py (wo)
-1

L—oo

_1 i
< 14 Hp’Y(WO)HLoo(Rd) HaijLHioo(Rd) CL —0.
Finally, we have

L)

1 1
Taliz 7

1 1
< 7 ()7 (I3)7 —0

L—oco

since L—4T ;.1 is convergent, thus bounded. Therefore, we have proved that

. 1
Jim 5 Trrz ) (=Aryr) =T (-Av). (2.88)

We now turn to the convergence of the potential energy, that is,

. 1
Lh_Igo EDm,L (91,91) = D (f, f), (2.89)

where f = p, — p and g, = py, — pr(wo, ). We introduce the auxiliary
function fr, defined as the LZ%periodic function equal to f(wp,-) on I'f.
We first prove that

T (Dt (g191) — Dt (fr, 1)) = 0. (2.90)

Indeed, rewriting g7, as gr, = X%,perfL + (X%,per — 1) 11, with the definition
XL,per = Zke(LZ)d XL ( + k), we have

2

N

H (-Ap + m?) "2 (g, — fL)‘

—2 2
ey =™ lgr = fllzzer,)

<0 per = 1) (2= 1) e
<Om2|f1 — ,ULH%‘” 1,41

2 —
< C (lull oo + oyl o)™ L1,
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which proves (2.90). Then, we prove that

lim Dy, (fr, fr)
L—o00 Ld

= Do (. 1). (2.91)

Below, we detail the proof of (2.91) which corrects a slight error in [29]. In
view of (2.85), it is sufficient to show that

2 2

arp = ‘Sld;i;l‘ <H(—AL + m2)_% fL‘

~ (ot mt) ) o)

L2(T')

tends to zero. We have

1 1
o= ga [ Wor fuf@yde — g [ Wi (o0, 2)
1
= o . ) [ Wale =) () - o),

where hy, = Wt fr+ (Wi f) (wo, -) is in L°(R%) and satisfies HhLHLoo(Rd) <
C\fr + fHLoo(Qde) <C HfHLOO(Qde)' We split a, into two parts, namely

1
Oron =g [ drhi @) [ o, W 5= 0) (F2.0) = 1 )

and
o=z [ dehn (@) | @ L) = ).

For the first term, it holds that

1
<
larout| < 7d /FL dx |hy, (z)] <2HfHLoo(Qde) /IzIZC\E dzWp, (z))

2
<Ol |,y W) 20

where we have used that W, is integrable over R?. We turn to the second
term

C
aninl < T 1712 (e / dy ( / d W, (1 — y))
LpveNL I'p
L4=4/L
<C Hf”ioo(Rd) HWmHLl(Rd) —1a 20

which concludes the proof of (2.91), thus proving (2.89). In view (2.88)
and (2.89), we conclude that

. 1
Lh—r>I;o ﬁgﬁ,m (wo,vL) = E,u,m (v) = Lym-
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Therefore, using (2.87),

I;ﬁm,EF (wo)

lim sup Td < Lymeps

L—o0

which concludes the proof of (2.83) for u € L>®(Q x RY). For the general
case, we consider i, = min {n, u}, and denote by I = I,y cos Inn = Ly mepos
It (w) = Ilﬁm@v (W), Ipp(w) = IimmeF (w) and by vy, v, YL,n YL minimizers
of I, I, I, ,, and Iy, respectively. Using a test state 7' = 0, we have, similarly

as in the proof of (2.57),

1 1
D < = 2 < 2,
m,L(p’yL,nap’YL,n) — mg Ty Moy = mg AL H

and )
Din(pys: p) < —5 7z - (2.92)
Next, using v as test state in the problem I, we obtain a.s.
In <1+ Dy (py = pns Py = ) — D (py = s py — 1)
< T+ 2Dp (pys po = pan) + Drn (pins in) = Do (5 12)
< T+ <2Dm (Py:0)? + Do (1 1)? + Dim (Mna#n)%> Do (1t = iy po = pin)

N

4
< T4 s llellz Nl = pnll e (2.93)

where we have used (2.92). Similarly, we have a.s.

N[

)

4
<o+ m2 HMHL?(FL) [ — MnHL?(rL) : (2.94)

1
Ip <Ipn+ <2Dm,L (Prims Pypn) ® + D (UL + By i1+ L)

N

X Dy 1, (0L, — Ly 0L — L,n)

Let € > 0 and let N € N such that ||g — pn|| 2 < m2e/(12(|| ;2 +1)). We
now consider €”, the set of probability 1 such that for any w € Q"

. 1 2 2
Jim ) — ) ey = -

and

. 1 2 2
Jim g flp(w, Mz, = llallz: -

Let wo € ), NQ". There thus exists Lo such that for any L > Lo, it holds

mie?

12(]pll 2 +1))?

1 2 2
7a lu(wo, ) = pn(wo, gz, ) = llw = unlizz | < (
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and
<1.

1 2 2
7d [ (e, ')HL?(FL) - HMHLg
For L > Ly, we have by (2.94)

Ir(wo) _ Iy n(wo) | 4 l[lwo, M 2 (r,y 1(wo, ) = v (wos )l p2r )
Ld — Ld m?2 Lg L%
In n(wo) 4 me
<=+ —=plp+1) | le—pnl+
L el 2 ol + 1)
It n(wo) 4 m2e
<=+ =plp+1)m———r
p e W L)
< Lr.n(wo) 2
- Ld 3
Therefore 1, (w0) I n(wn) 2
. L{Wo . L,N(Wo €
lim su < limsup —/——= + —.
L~>oop Ld L%oop Ld 3

As un € L®(QxR%), we have already proved that limsup; _, . L™, y(wo) <
In. Thus
I1,(wo)

Ld

2
lim sup <In+ EE <I+e, (2.95)

L—oo
where the last inequality follows from (2.93). As (2.95) is valid for any € > 0
and any wp in the set ), N Q" of probability 1, this concludes the proof of
the Proposition. O

We complete the proof of Theorem 2.5.2 using Lemma 2.5.7 below applied
to Xr (w) = L~L  _ (w) and the bound (2.57).

HyER
Lemma 2.5.7. Let (X,),cy be a sequence of random variables in L' ()
and X € L' (Q). We assume that there exists a sequence of random variables
(Zn)pen converging in L' () to Z € L* (Q) such that

e liminfE (X,,) > E(X)
n—o0

e limsup X,, < X a.s.

n—oo
e X, <Z, a.s.
Then, X, — X strongly in L' () as n — .

Proof. Replacing X,, by X, — X, we can assume without loss of general-
ity that X = 0. We then write X,, = (X,)+ — (X,,)—. We first notice
that (X,)+ — 0 a.s. By the dominated convergence theorem with "mov-
ing bound" (see e.g. [110, Theorem 1.8]), we conclude that (X,)y — 0 in
L' (Q). By the liminf condition, we have limsup,,_,..E((X,)_) < 0. As
(Xn)— > 0, we conclude that (X,,)_ — 0 in L' (Q). Finally, E(|X,|) =
E((Xn)+)+E((X,)-) tends to 0. O
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Remark 2.5.8 (Convergence of ~;). We deduce from (2.69) and (2.56)
that the weak-x limit v of v} satisfies Eym (v) — evTr (7) = Iymep and is
therefore a minimizer of I, m ep -

2.A Ergodic group actions

In this section, we recall the definition of an ergodic group action and give
some examples of probability spaces and ergodic group actions on these
probability spaces.

We recall that a probability space is a triplet (2, F,[P), where 2 is an
arbitrary non empty set, F C P(Q) is a o-algebra of {2 and P a positive
measure on F such that P(€2) = 1. A random variable (r.v. in short) on 2
is a measurable function on ) that takes finite values on a subset of {2 of
measure 1.

Let (Q, F,P) be a probability space and G a group. A group action of G
on (€, F) is a family of transformations 7 = {73, : @ — Q, k € G} satisfying

® Tk O Tkl = Thyk! Vk,k/ € G,
® T — Id,
e the map 73 is measurable for all £ € G.

Note that for every k € G, the function w +— 7;(w) is a bijective map from
Q to 2, with inverse 7_;. We now define ergodic group actions.

Definition 2.A.1 (Ergodic group actions). Let 7 = (7x)keq be a group
action of G on 2.

e 7 is called measure preserving if for all A € F and for all k € G, we
have P(11(A)) = P(A).

e 7 is called ergodic if it is measure preserving and if T,(A) = A for all
k € G implies that P(A) € {0,1}.

In the next sections, we give some examples of probability spaces and
ergodic group actions on these probability spaces.

2.A.1 Finite or countable sets of events

We consider in this section the case where ) is finite or countable.

Proposition 2.A.2. Let Q = {wy,ws, - ,wy} be a finite set, F be the set of
subsets of Q, and P be a measure on  such that for any w € Q, P({w}) > 0.
Let T be a group action of Z on ). Then,

(i) if T is ergodic, then T is cyclic, that is, for any w in  we have

{(w), k€Z} ={mk(w), 0<k<n-—-1}=Q,

125



(ii) if T is ergodic, then the measure P is necessarily uniform, that is,
P(w) =2 for allw € Q.

Proof. We start with Assertion (7). Assume that for a given w € Q, we have

{Th(w), k€ Z} # {m(w), 0<k <n—1}.

Then there exist 0 < k < k' < n — 1 such that 7(w) = 7p(w). Thus
T —k)i(w) = w for any i € Z. Let m € Z. We can write m—k = m/+(k'—k)i,
where i € Z and 0 < m/ < k' — k. It follows that 7,(w) = Tpwik(w) €
{mt(w), 0 < k < mn — 1}, which contradicts the assumption. Thus, the first
part of the equality holds true.

Assume now that for a given w € § there exists w’ € Q such that w’ ¢

{1k (w), k € Z}, then
0<P({w}) <P{mw), keZ}) <1-P({u'}) < (2.96)

As {7 (w), k € Z} is invariant under 7, then (2.96) contradicts the ergodicity
assumption.

We turn to the proof of Assertion (u7). From Assertion (i), we deduce
that for any w,w’ € € there exists k € Z such that 7 (w) = w’. If in addition
T is measure preserving, then

P({w'}) =P{m (w)}) =P ({w}).

We turn now to the case of infinite countable probability set €.

Proposition 2.A.3. Let Q = (w;)ien be a countable infinite set, F the
set of the subsets of Q and P a measure on (2, F) such that for any w €
Q, P{w}) > 0. Let 7 be a measure preserving group action of Z on . Then
the cycles of T are finite, that is, for any w in Q the set {mx(w), k € Z} is
finite.

Proof. Suppose that there exists w € Q such that A(w) = {7x(w), k € Z}
is infinite; we denote its elements by (ax)ren. They satisfy ap # ap and
P({ax}) = P({w}) for all k, k" € Z. Also,

1> P({ri(w),k € Z}) =Y P({ar})

keN

= P({wh) =

keN

This contradiction concludes the proof. O

Corollary 2.A.4. IfQ is a countable infinite set, then there exists no ergodic
group action of 7, on .

The case of € being uncountable is more delicate. Here are two significant
examples.
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2.A.2 Independent and identically distributed variables on
Zd

Let d € N* be the space dimension. We define a probability space by
o 0 ={-1,1}7"

o F = o(Y;,i € Z%), where Y;(w) = w; is a sequence of real valued
random variables,

e P= p®Zd where p = p16; + (1 —p1)d_1 and 0 < p; < 1.

The variables Y; are independent and identically distributed (i.i.d.). Here,
we consider the group action of G = Z% on Q defined by 7;,(w) = w. 1. It is
called the shift on Z¢.

Remark 2.A.5. e This probability space models a crystal with one par-
ticle at each site of the lattice Z%. The charges of the particles take their
values in {—1,1} and are independently and identically distributed fol-
lowing the measure p.

e The results of this section are still valid if we replace {—1,1} in the
definition of the probability space by an arbitrary set O with p a measure
on O.

Proposition 2.A.6. The shift on Z% is measure preserving.

Proof. By a monotone-class argument (see e.g. |78, Theorem 1.1]), we only
need to show that 7 preserves the measure of the sets of the form C' = {w €
Q| w; = 2}, where z € {~1,1} and i € Z%. Let C be such a set. Then, we
have P(C) = p({z}) by the definition of the measure P. Therefore

ke 7l P(r(C)) = P({w € | wipy = 7)) = p({a}) = P (C).

Proposition 2.A.7. The shift on Z% is ergodic.

Proof (inspired by the proof of [68, Proposition 5.2]). For a set A € F, and
a subset I C Z% we define

mrA={y € Q| 3z € A with xp, = yg, Vk € I}.

We notice that Npenm_p, 04 = A, thus lim, 1o P (W[,n,n]dA> =P(A).

We denote by o™ =0 (Y, ki > 1, 1 <i<d)ando™ =0 (Y, k; < -1, 1 <i<d).
As the sequence (Y;) is i.i.d, then ot and ¢~ are independent. Recall that

two o-algebras F and G are independent if for all A in F and B € G, we

have P(AN B) = P(A)P(B).
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We introduce the sets
An = 7T[172n+1}dA7 AOO = mneNAn S O'+7 AT_L = 7T[_2n_17_1}d14

and
Ago = ﬂneNA; co .

We suppose that 73,(A) = A for all k € Z¢. We will show that A = A, and
A=A as. We denote by u, = (n+1,--- ,n+1)". A simple calculation,
using the invariance of A under 7, shows that

Tl pn)dd = Ty, (W[LQnH]dTun (A)) .

Hence,
P <w[,n7n}dA> —P <7T[1,2n H]dA) — P(Ay).

Therefore lim,, o P (A,) = P(A). It follows that

la, —1a>0and E(1lsa, —14)=0,
therefore 14 = 14 a.s. Similarly, we show that ly- =1laas. Finally,

P(A) = P(Ax N AL) = P(Ax)P(A) = P(A)?,

where we have used that A, and A7 are independent. We conclude that

P(A) € {0,1}. O

2.A.3 The a-periodic case
In this section, we consider the probability space defined by

e Q=10,1),

e F is the Borel algebra of [0, 1),

e [P is the Lebesgue measure.
We consider the group G = Z, and the group action defined by

Tk (W) = w+ ak — [w + ak] = mod(w + ak,1) Vk € Z,

for a given a € R. 7 is called the a-periodic shift on [0,1) .
Proposition 2.A.8. The a-periodic shift is measure preserving.

Proof. Let A € F and let f : R — R be the 1-periodic function that equals
to 14 on [0,1). Then P(A) = ff“ f(t)dt, for all z € R, and

1 a+1
IF’(T(A)):/O f(t+a)dt:/ . F(t)dt = P(A).
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Proposition 2.A.9. If a is rational, then T is not ergodic.

Proof. Let a = £ with p € N and ¢ € N\ {0}, and A = U?Zl[%, ZiZly We
can easily show that P(4) = 3 and that for all k € Z, 7,(A) = A. O

Proposition 2.A.10. If a is irrational, then T is ergodic.

Proof. Let A € F and f be the same function as in the proof on Proposi-
tion 2.A.9. The Fourier expansions of f and f(a + -) read

f(CC) _ Z Cne2i7rmn

nez

and

f(.%' + a) _ Z cne2i7rane2i7r:vn.
ne’l

If 1(A) = A, then f(x + a) = f(x), for all x € [0,1). Therefore
VneN, ¢, =c,e*™ ", (2.97)

by identification of the Fourier coefficients. As a is irrational, (2.97) leads
to ¢, = 0 for all n #£ 0. Thus f is constant, equal to 0 or 1, which concludes
the proof. O

2.B Some properties of density matrices

In this section we recall some properties of density matrices for finite systems.
These are self-adjoint operators v satisfying the Pauli principle 0 < v <
1. Moreover, they have finite number of particles Tr () < oo and finite
kinetic energy Tr (—A~y) < co. We recall these notions and some properties
of the density matrices for finite systems in Sections 2.B.1 and 2.B.2. In
Section 2.B.3, we recall a representability theorem identifying the set of
electronic densities that arise from finite density matrices. Finally, we recall
in Section 2.B.4 some properties of locally finite density matrices.

2.B.1 The trace class property

A bounded operator A is said to be trace class if for one (hence all) orthonor-
mal basis (¢n)nen,

Z(Son’ |A|Qpn> < 0.

neN

Its trace is then given by

Tr(A) = ) (n, Apn).

neN
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Equipped with the norm ||A[|g, = Tr (JA[), the set of trace class operators
&1 is a Banach space.

A bounded operator A is said to be Hilbert-Schmidt if Tr (A*A) < oo.
Equipped with the scalar product (A, B)g, = Tr (A*B), the set of Hilbert-
Schmidt operators &5 is a Hilbert space.

The following Propositions recall the definitions of the kernel associated
with a Hilbert-Schmidt operator and density associated with a trace class
operator.

Proposition 2.B.1 (The kernel). Let A € Gy. Then there exists a unique
function A € L*(R? x RY) such that

Ve PRY, Ap(w) = [ Alz)e)dy,

Moreover ||Alls, = || Allp2(raxra)- A(.,.) is called the kernel of A.

Proposition 2.B.2 (The density). Let A be a trace class operator. Then
there exists a unique function pa € L'(RY) such that

YW e LP(RY), Tr(AW) = / pa(z)W (z) d.
R4
If A>0, then pa > 0. pa is called the density of A.

Moreover the map A: &1 — LY R?) s linear and continuous, and
A = pa

lpallLr ey < [[Alle, -

2.B.2 Operators with finite kinetic energy
We recall that ]/”\denotes the Fourier transform f, that is,

f (k) = 71 z)e T dg
F) = s [, F)e e

For 1 < j < d, the momentum operator P; in the direction j defined by

8.%']‘
Pio— —i2% yoe D(P)

D(py) = {o e (R, G2 e LR}

is self-adjoint. Indeed, for ¢, € D(P;), we have 13;4\,0 (p) = pip (p) and

(Pip,¥) = (pj3, ) = (B.0;0) = (10, P).
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Therefore P; is symmetric. Besides, for ¢ € L?(R?), the function Yi(p) =

#(p)

- satisfies
pjEi

L fio) a= [ per<es

Thus ¢4 = ]:_1(12);) is in D(P;) and (P; £ i)+ = ¢, which shows that
Ran(P; £ i) = L*(RY). Therefore P; is self-adjoint.

We can now define operators with finite kinetic energy.

Definition 2.B.3 (Operators with finite kinetic energy). Let A be a trace
class operator. We say that A has a finite kinetic energy if for all 1 <
Jj <d, P;jAP; € &1. In other words, if we denote by D(P;)" the set of the
continuous lmear forms on D(P;), then A has finite kmetzc energy if the
operator PjAP; : D(Pj) — D(P')’ satisfies

o P;AP; (D(P;)) C L*(RY), that is, for all ¢ € D(P;) , there exists f €
L2(RY) such that for all 1 € D(P;), (Pj, APjp) 2 2rt) = (¥, ) r2(res
e the operator
PjAP;: D(P;) — L*R%)
p = f

can be uniquely extended to a bounded operator on L*(R?),
e the so defined extension of the operator P;AP; is trace class.

We denote by Tr (—AA) = Z;lzl Tr (PjAP;) and by G1,1 the subspace of &y,
consisting of the trace class operators on L? (Rd) with finite kinetic energy.

Remark 2.B.4. If A >0 and A € Gy, then Zj 1 Tr (P;AP;) always makes
sense in [0, +00] as

d
Z P AP Z<thn, AV(pn>L2 (Rd)d,

neN

where (©n)nen 45 an orthonormal basis of L*>(R®) consisting of functions in
HY(RY). This quantity is finite if and only if A has a finite kinetic energy
as will be shown in the Proposition 2.B.5.

Proposition 2.B.5 (Characterization of the operators with finite kinetic
energy). Let A € &1 be a positive (hence self-adjoint) operator which we
write A =)y Anln)(@nl, where (Ay)nen is a summable sequence of non
negative real numbers and (pn)nen an orthonormal basis of L*(R?). Then,
A is in &1 if and only if the following conditions are satisfied

(i) Yn €N, ¢, € H'(RY),
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(i) ZnEN)\ ”v‘Pn”y(Rd 00.

2
Jon

D, and

Moreover, for 1 < j < d, it holds that ppap;, = ) ,enMn
TI’(—AA) = ZneN)‘ ||V80n||L2(Rd

Proof. First, assume that A = > _yAnlen)(pn| satisfies conditions (i)
and (i1). Let 1 < j < dand ¢, € D(P;). Then, we have

<PjAPj,1/J(,0>D(P].)/7D(P Z)\ ]@7 “n LQ(Rd)<90naP ¢>L2 (R4)
neN

= Z An{@, Pjon) L2 ®a) (PjPn, V) L2 (Ra)-
neN

Therefore

(Pj AP0, %) i,y ppy| < Ml Pjonll72 gay 0l L2 ety [9]] 2 et

neN

< Z >\nHV90n||%2(Rd)HSDHL2(Rd)||¢\|L2(Rd) < 00.
neN

It follows that PjAP;jp € L*(R%) and P;AP; defines a bounded operator on
L*(R?). Let (¢n)nen be an orthonormal basis of L?(R%). Then

2

Z(T/JianAPﬂ/fi>L2(Rd) =

]QOm wz L2(R4)

ieN i€eN neN
2
-y 21 s s
neN €N
2
= Z)‘nHPjSDnHm(Rd)
neN
2
< Z)‘n”v(anLQ(]Rd) < 0
neN

Conversely, let A = > - Anlen)(pn| € 61,1, and let (¢, )nen be an or-
thonormal basis of L?(R?). Then

d
Z An HV%HiQ(Rd) = ZZ@M’P]APWDB(W) <
neN j=1 ieN
which proves that conditions (i) and (7i) are satisfied. O

We now state the Hoffmann-Ostenhof [73] and Llieb-Thirring [115, 116]
inequalities for finite systems.
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Proposition 2.B.6 (Hoffmann-Ostenhof inequality for finite systems). Let
A be a positive trace class operator with finite kinetic energy. Then /pa €
HY(R?) and

19 /P12 ) < T (—AA).

Proposition 2.B.7 (Lieb-Thirring inequality for finite systems). There ex-
ists a constant K such that for all A € &1 satisfying 0 < A <1,

K/ p114+2/d < Tr (—AA).
R4

2.B.3 A representability result for finite systems

The aim of representability criteria is to identify sets of densities p that
arise from admissible density matrices. For finite systems, if v € &1 N
S, 0 <y <1, and Tr (~Ay) < oo, then p, > 0 and \/p; € H' (R%)
by the Hoffmann-Ostenhof inequality. Lieb’s representability theorem [107,
Theorem 1.2] shows that these conditions are in fact sufficient for a function
p to be representable. We recall here this theorem.

Theorem 2.B.8 (Representability for finite systems). Let N € Ry and p
be a non-negative function of LL(R?) satisfying

JpeH'®RY) and / p=N.
Rd

Then there exists a self-adjoint operator v € &1 1, satisfying 0 < v <1 and
Py = Pp-

2.B.4 Locally trace class operators

In this section, we recall some properties of locally trace class operators. We
restrict ourselves to bounded operators to avoid technical difficulties arising
from the domains of the operators. Such difficulties can be overcome by
adding appropriate conditions on the domain.

Definition 2.B.9 (Locally trace class operators). Let A be a bounded op-
erator on L?(R%). A is said to be locally trace class if for all functions
x € L°(R?), the operator xAx is trace class.

Similarly, we define locally Hilbert-Schmidt operators.

Definition 2.B.10 (Locally Hilbert-Schmidt). Let A be a bounded operator
on L*(RY). A is said to be locally Hilbert-Schmidt if A*A is locally trace
class, that is, Ax is Hilbert-Schmidt for all functions x € L (R?).

We now define the kernel and the density associated with a locally trace
class operator.
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Proposition 2.B.11 (The kernel of locally trace class and Hilbert-Schmidt
operators). Let A be a bounded operator which is either locally trace class or
locally Hilbert-Schmidt. Then there exists a unique A € L% _(R? x RY) such
that

Ve IERY, Ap(w) = [ Alw)etn)dy

and for any compact set B C RY,

[Allpxp = ||1BAlB||62 :
A(.,.) is called the kernel of A.

Proof. In both cases YAy € &y for any xy € LP(RY). Let By and By be two
compact sets of R?, and A; the kernel of 15, Alg,, i € {1,2}. We first prove
that if By C Ba, then Ay = A; on By x By. Indeed, for ¢,¢ € L?(RY) with
supports in By, we have

/R | A2(@,y)e(y)v(z) dy dv = (.15, AL, #) 12 (ma)
= (1p, ¥, 1, Al g, 1p, ¢>L2(Rd)
= (¢,1p,1p,Alp, 1, 30>L2(Rd)
= (¢, 1B1A131<P>L2(Rd)

= /Rd Ar(z,y)e(y)(z) dy d.

We are now able to define A(-,-) to be equal to Ap on B x B for all compact
sets B. A(-,-) is then clearly in L (R?) and for ¢ € L*(R?) with compact
support, we have

Ap(z) = y A(z,y)p(y)dy  ae.

O

Proposition 2.B.12 (The density of locally trace class operators). Let A
be a bounded and locally trace class operator. Then there exists a unique
pa € LL _(RY) such that for all functions x € L°(R?), we have

loc

Tr (A = [ \@pate)de.

Moreover, if A >0 then pa > 0. pa is called the density of A.
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Proof. Let By and By be two compact sets of R%. We denote by pa,p,; the
density corresponding to 15, Alp,, ¢ € {1,2}. We first prove that if B; C Ba,
then pa B, = pa,p, on B1. Let B C B;. We have

/dpA’321B = Tr(1p,Alp,1B)
R

= Tr (13132A1321B)
= Tr (1B1B1A1B113)

= /Rd PABi 1B,

where we have used the cyclicity property of the trace [131, Theorem VI.25
p.212]. We are now able to define p4 to be equal to p4 g on B for all compact
sets B. py is then clearly in Llloc(Rd) and for y € LX(R?), we have, denoting

by B = supp(x),
Tr (xAx) = Tr (x1pAlpy) = Tr (15Al5Y?)

= / paBX: = / pax>.
B R4

Finally, we define the operators with locally finite kinetic energy.

Definition 2.B.13 (Operators with locally finite kinetic energy). Let A be a
locally trace class operator. We say that A has a locally finite kinetic energy
if for all 1 < j < d, we have

Vx € L®(RY), xP;APjx € 6.

2.C Some elements about the spectrum of —A;

We have seen in Section 2.3.1 that if the probability space §2 is finite, then
the spectrum of —Aj is a sequence of discrete eigenvalues going to infinity.
We also recall that if 2 is countable and infinite, then there is no ergodic
group action 7 of Z% on Q. The case of infinite non countable probability
spaces is more intricate. In this section, we study the spectrum of —Ag
in two particular cases of such probability spaces, namely, the probability
spaces presented in Sections 2.A.2 and 2.A.3. In both cases, we show that
o(—A;) =10, +00).

Before going on with the proofs, let us recall that by Weyl’s Theorem [148,
Proposition 4.1.10. p. 121], the spectrum of a self-adjoint operator A on a
Hilbert space H is characterized as follow

an” = 1, Vn € N,

A€o(A) < Ifu)nen € D(A) S-t-{ (A = N) full—n—000
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and

gn — 0 weakly in H,
A€ 0ess(A) <= gn)neny € D(A) s.it. ¢ |lgnl| =1, Yn €N,
H(f4‘_'A)gn‘+__+n=»ooo-

The sequence (f,) is called a Weyl sequence and (gy,,) is called a singular
Weyl sequence.

2.C.1 The i.i.d case

We consider in this section the settings of Section 2.A.2. We have the fol-
lowing result.

Proposition 2.C.1. The spectrum of —Ag is given by
0(—Ay) = 0ess(—Ag) = [0, +00).

Proof. For the sake of simplicity, we take p; = %, so that the variables
(Yi);ezq are centered at 0. For x € L?(R?), we introduce

wax ZY x(x —1)
i€Z4
For k € Z%, we have

Dy v ( ZY (Tie(w))x(z — 1)

1€Z4

= 3 Yerlw)x(@ )

iezd
= Yi(w)x(z —i+k)
i€zd
=0, y(w,z+k).
Thus the function @,y is stationary. Moreover, it is in L? and || f|| 2 =

||X||L2(Rd). Indeed,

2

||‘I)X,Y||%g = / Z Y ( (z—1i)| dx

i€Z4
_ZE (Y?) / (z —i)* dz
i€74
= Z/ X —’L 1’
ZEZd Q
= [ x(@) o = Il oy (2.98)
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In the above equalities, we have used the fact that E(Y;Y;) = ¢;;, which
follows from the independence of the variables Y; and from their common
first and second moments: E(Y;) = 0 and E(Y}?) = 1. If y € H?(R?) then
feH? A= Ziezd Yi(w)Ax(z — i) and
[=Asfllez = || = Axllr2e)- (2.99)
Let now A € [0,+00). We know that o.ss(—A) = [0,4+00). By Weyl’s
theorem there exists a normalized sequence (x,)nen in H2(R?) such that

[(=A - )‘)XNHLQ(Rd)n:))OO-

Using (2.98) and (2.99), we obtain that (®,,, y) is a normalized sequence in
L? and
[~ = Ny vl —20.

Therefore, (P, v) is a Weyl sequence for —A; corresponding to the singular
value A; thus A € o(—A;). As —Ag > 0 in the sense of quadratic forms, we
deduce that o(—A;) = [0, +00). O

Proposition 2.C.2. The spectrum of —Ag contains an infinite sequence of
ergenvalues.

Proof. Let (xn)nen and (A )nen be an orthonormal basis of eigenfunctions of
—Aper and their corresponding eigenvalues, where —Ap, denotes the Lapla-

cian on L%er (Q). We introduce the stationary functions f,, := x, a.s. It is

easily checked that f,, € HZ and that —Agf, = A\ fn. O

2.C.2 The a-periodic case, a irrational

We consider in this section the settings of Section 2.A.3 with an irrational
parameter a. We have the following

Proposition 2.C.3. The spectrum of —Ag is given by
0(=As) = Oess(—As) = [0, +00).
Proof. Let us show that
{4n®|j + ak|?, j,k € Z} C op(—Ay). (2.100)
For k,j € 7Z?, the function

fk‘,j(wax) _ eQiﬂk(ax-{—w)-l—Qiﬂjx‘
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is stationary. Indeed, for R € Z we have a.s. and a.e.
ka(TR(w)’x) _ e2i7rk(am+(w+aRf[w+aR}))+2i7rjm
_ e2i7rk(a:v+w+aR) 672i7rk[w+aR]e2i7rj:v62i7rjR
_ eQiﬂk(a(a}—i—R)-{—w) eQiﬂj(a}—i—R)
= frj(w,xz + R).
Moreover f ; is in H2 and

Ay frj = AT*|j + ak|? fi.,

which proves (2.100). It is then a classical and elementary result that
{472|j + ak|?, j,k € Z} is dense in [0, +00). n
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Chapter 3

The reduced Hartree-Fock
model for short-range quantum
crystals with nonlocal defects

We detail in this chapter the results contained in an article [92] which has
been accepted for publication in Annales Henri Poincaré. We consider quan-
tum crystals with defects in the reduced Hartree-Fock framework. The nuclei
are supposed to be classical particles arranged around a reference periodic
configuration. The perturbation is assumed to be small in amplitude, but
need not be localized in a specific region of space or have any spatial invari-
ance. Assuming Yukawa interactions, we prove the existence of an electronic
ground state, solution of the self-consistent field equation. Next, by studying
precisely the decay properties of this solution for local defects, we are able
to expand the density of states of the nonlinear Hamiltonian of a system
with a random perturbation of Anderson-Bernoulli type, in the limit of low
concentration of defects. One important step in the proof of our results is
the analysis of the dielectric response of the crystal to an effective charge

perturbation.
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3.1 Introduction

In solid state physics and materials science, the presence of defects in materi-
als induces many interesting properties, such as Anderson localization [4, 5]
and leads to many applications such as doped semi-conductors [149|. The
mathematical modeling and the numerical simulation of the electronic struc-
ture of these materials is a challenging task, as we are in the presence of
infinitely many interacting particles.

The purpose of this chapter is to construct the state of the quantum
electrons of a mean-field crystal, in which the nuclei are classical particles
arranged around a reference periodic configuration. We work with the as-
sumption that the nuclear distribution is close to a chosen periodic arrange-
ment locally, but the perturbation need not be localized in a specific region
of space and it also need not have any spatial invariance. To our knowl-
edge, this is the first result of this kind for Hartree-Fock type models for
quantum crystals, with short-range interactions. By studying precisely the
behavior of our solution, we are then able to expand the density of states of
the Hamiltonian of the system in the presence of a random perturbation of
Anderson-Bernoulli type, in the limit of low concentration of defects, that
is when the Bernoulli parameter p tends to zero. The state of the random
crystal and the mean-field Hamiltonian were recently constructed in [29].
Our small-p expansion is the nonlinear equivalent of a previous result by
Klopp [87] in the linear case.

The mean-field model we consider in this study is the reduced Hartree-
Fock model [146], also called the Hartree model in the physics literature. It
is obtained from the generalized Hartree-Fock model [113]| by removing the
exchange term. As the Coulomb interaction is long-range, it is a difficult
mathematical question to describe infinite systems interacting through the
Coulomb potential. In the following, we assume that all the particles interact
through Yukawa potential of parameter m > 0. In fact, we can assume
any reasonable short-range potential, but we concentrate on the Yukawa
interaction in dimension d € {1,2,3} for simplicity. We consider systems
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composed of infinitely many classical nuclei distributed over the whole space
and infinitely many electrons.

We start by recalling the definition of the reduced Hartree-Fock (rHF)
model for a finite system composed of a set of nuclei having a density of
charge vy, and N electrons. The electrons are described by the N-body
wave-function (called a Slater determinant)

Ber, - zn) = %N_!det(soj(xm,

where the functions ¢; € L?(R?) satisfy (p;, ;) = 6;5. The rHF equations
then read

Hpi = X\ipi
H:_%AJrv VI<i<N, (3.1
—AV + m?V = |Sd_1| (,% - Vnuc)

where py () = SN J@i(@)* and Ay, -- -, Ay are the smallest N eigenvalues
of the operator H, assuming that Ay < Any1. Here, Sd_l‘ is the Lebesgue
measure of the unit sphere S9! (|S°| = 2, |S!| = 27, |S?| = 47). The
existence of a solution of (3.1) is due to Lieb and Simon [114]. See [130] for
the finite temperature case.

In order to describe infinite systems, it is more convenient to reformulate
the rHF problem in terms of the one-particle density matriz formalism [112].
In this formalism, the state of the electrons is described by the orthogonal
projector v = Zfil |pi) (pi| of rank N and the equations (3.1) can be recast
as

y=1(H <ep)
1
H=-ZA+V (3.2)

—AV +m?V = ‘Sdil‘ (Py — Vnue) »

where formally p(x) = v(z, ) and the Fermi level ep is any real number in
the gap [An, An41)-

For infinite systems, the rHF equation is still given by (3.2), but ~ is now
an infinite rank operator as there are infinitely many electrons in the system.
The operator v needs to be locally trace class for the electronic density p,
to be well-defined in Li (R?).

The rHF equation (3.2) was solved for periodic nuclear densities

Vnuc = Vper = Z 77( - k)
kER

by Catto, Le Bris and Lions in [36], and periodic nuclear densities with local
perturbations

VnuC:Zn(-—k)—i-u

kER
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were studied by Cances, Deleurence and Lewin in [24]. We have denoted by
R the underlying discrete periodic lattice. The corresponding Hamiltonians
are denoted by Hpe, and H,. See [121] for the finite temperature case.
Stochastic distributions,

Vnuc(wa ) = Z 77( - k) + Z Qk(w)X(' - k)

kER kER

for instance, were treated in [29].
Our present work follows on from [24, 33, 29]. We are going to solve the
equation (3.2) in the particular case where

Vnue = Vper 1V, (33)

where vpe; is a periodic nuclear distribution so that the corresponding back-
ground crystal is an insulator (the mean-field Hamiltonian Hpe, has a gap
around ep), and v € L2 . (R?) is a small enough arbitrary perturbation of
the background crystal. The perturbation v needs to be small in amplitude
locally, but must not be local or have any spatial invariance.

The rHF model is an approximation of the N-body Schréodinger model,
for which there is no well-defined formulation for infinite systems so far.
The only available result is the existence of the thermodynamic limit of the
energy: the energy per unit volume of the system confined to a box, with
suitable boundary conditions, converges when the size of the box grows to
infinity. The first theorem of this form for Coulomb interacting systems is
due to Lieb and Lebowitz in [109]. In the latter work, nuclei are considered
as quantum particle and rotational invariance plays a crucial role. For quan-
tum systems in which the nuclei are classical particles, the thermodynamic
limit was proved for perfect crystals by Fefferman [47] (a recent proof has
been proposed in [67]) and for stationary stochastic systems by Blanc and
Lewin [15]. Similar results for Yukawa interacting systems are simpler than
for the Coulomb case and follow from the work of Ruelle and Fisher [49]
for perfect crystals and Veniaminov [153] for stationary stochastic systems.
Unfortunately, very little is known about the limiting quantum state in both
cases.

For (orbital-free) Thomas-Fermi like theories, the periodic model was
studied in [114, 35|, the case of crystals with local defects was studied in [26]
and stochastic systems were investigated in [14]. To the best of our knowl-
edge, the only works dealing with systems with arbitrary distributed nuclei
are [35, 13] for Thomas-Fermi type models.

As mentioned before, our work is the first one to consider this kind of
systems in the framework of Hartree-Fock type models. Our results con-
cern small perturbations of perfect crystals interacting through short-range
Yukawa potential. Extending these results to more general geometries and
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for the long-range Coulomb interaction are important questions that we hope
to address in the future.

After having found solutions of (3.2) for any (small enough) v € L2 .. (R%),
we study the properties of this solution for local perturbations v. This en-
ables us to investigate small random perturbations of perfect crystals. Pre-

cisely, we consider nuclear distributions

Vnuc(wax) = Vper(x) + Z Qk(w)X(x - k),
kER

where (qx)ker are i.i.d. Bernoulli variables of parameter p and y is a com-
pactly supported function which is small enough in L? (Rd). We are interested
in the properties of the system in the limit of low concentration of defects,
that is when the parameter p goes to zero. We prove that the density of
states of the mean-field Hamiltonian H), = —%A + Vp, which describes the
collective behavior of the electrons, admits an expansion of the form

J
mp =m0+ > e +O(p"H), (3.49)
j=1

Here, ng is the density of states of the unperturbed Hamiltonian Hper =
—%A + Vper and p11 is a function of the spectral shift function for the pair
of operators Hper and H,, the latter being the mean-field Hamiltonian of
the system with only one local defect constructed in [24]. We give in Theo-
rem 3.2.7 a precise meaning of O(p’*1).

In [87], Klopp considers the empirical linear Anderson-Bernoulli model

1
H=-SA+Vo+V with Vw,z) =Y qu(wn(z — k),
kER

where Vj is a linear periodic potential and n an exponentially decaying po-
tential. He proves that the density of states of the Hamiltonian H admits an
asymptotic expansion similar to (3.4). The case where V (w, z) is distributed
following a Poisson law instead of Bernoulli is dealt with in [88]. Our proof
of (3.4) follows the same lines as the one of Klopp. The main difficulty here
is to understand the decay properties of the mean-field potential V' solu-
tion of the self-consistent equations (3.2). For this reason, we dedicate an
important part of this chapter to the study of these decay properties. In
Theorem 3.2.3 below, we show that for a compactly supported perturbation
v, the difference V' — V¢ decays faster than any polynomial far from the
support of the perturbation v. Moreover, we show that the potential gener-
ated by two defects that are far enough is close to the sum of the potentials
generated by each defect alone.

The chapter is organized as follow. In Section 3.2, we present the main
results of the chapter. We start by recalling the reduced Hartree-Fock model
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for perfect crystals and perfect crystals with local defects in Section 3.2.1.
In Section 3.2.2, we state the existence of solutions to the self-consistent
equations (3.2) for vy, given by (3.3). We also explain that our solution
is in some sense the minimizer of the energy of the system. We also prove
a thermodynamic limit, namely, the ground state of the system with the
perturbation v confined to a box converges, when the size of the box goes
to infinity, to the ground state of the system with the perturbation v. In
Section 3.2.3, we prove decay estimates for the mean-field density and po-
tential. In Section 3.2.4, we present the expansion of the density of states of
the mean-field Hamiltonian. The proofs of all these results are provided in
Sections 3.4, 3.5, 3.6 and 3.7. In Section 3.3, we study the dielectric response
of a perfect crystal to a variation of the effective charge distribution, which
plays a key role in this study.

3.2 Statement of the main results

3.2.1 The rHF model for crystals with and without local
defects

In defect-free materials, the nuclei and electrons are arranged according to a
discrete periodic lattice R of RY, in the sense that both the nuclear density
Unue = Vper and the electronic density are R-periodic functions. For simplic-
ity, we take R = Z¢ in the following. The reduced Hartree-Fock model for
perfect crystals has been rigorously derived from the reduced Hartree-Fock
model for finite molecular systems by means of thermodynamic limit pro-
cedure in [36, 24| in the case of Coulomb interaction. The same results for
Yukawa interaction are obtained with similar arguments. The self-consistent
equation (3.2) then reads

Yo = 1 (Hper < 5F)

1
Hper = _§A + Vper (35)
—AVper + mQVPer - ‘Sd_l‘ (Pyo = Vper) -

It has been proved in [36, 24] that (3.5) admits a unique solution which is
the unique minimizer of the periodic rHF energy functional.

Most of our results below hold only for insulators (or semi-conductors).
We therefore make the assumption that

Hper has a spectral gap around ep. (3.6)
The rHF model for crystals with local defects was introduced and studied

in [24]. A solution of the rHF equation (3.2) is constructed using a varia-
tional method. One advantage of this method is that there is no need to
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assume that the perturbation v is small in amplitude. The idea is to find
a minimizer of the infinite energy of the system by minimizing the energy
difference between the perturbed state and the perfect crystal. The ground
state density matrix can thus be decomposed as

Y= +Qu, (3.7)
where @, is a minimizer of the energy functional
Y 1
E(Q) = Tr oo (Hper — €F)Q) + Dim(pq, v) + 5 Dm(pq, Q) (3.8)

on the convex set
1
—{@ =Q —0<Q<1-7%, (-A+1)2 Qe SLARY),
(A +1)7 Q¥ (-A+1)7 € G1(L*RY) } |
where @+ = (1-70)Q(1-70), Q= = 7@ and Tr, (4) = Tr (A++ + A=),
We use the notation &, to denote the p't Schatten class. In particular &y is
the set of Hilbert-Schmidt operators. The second term of (3.8) accounts for

the interaction energy and is defined for any charge densities f,g € H—'(R?)
by

(3.9)

(Sd 1‘/@ e +m /Rd Rdf —y)g(y) dz dy,

where f ( fRd e~ P ?dyx is the Fourier transform of f. The
Yukawa kernel Ym, the inverse Fourier transform of | S9! (Ip> + m2)~1, is
given by

m~ el ifd =1,

Yiu(z) =< Ko(mlz|) ifd=2,

lz|"tem™lifd =3,
where K (r) = fooo e~ osht dt is the modified Bessel function of the second
type [110]. It has been proved in [24] that the energy functional (3.8) is con-

vex and that all its minimizers share the same density p.. These minimizers
are of the form

vy=1(H <ep)+0
H:—%A+V (3.10)
SAV 4wV = |50 () = vper = ),
where 0 < § < 1(H =¢ep). If v is small enough in the H~!-norm, then
' :OO.ne of the purposes of this study is to find decay estimates of the po-

tential V' solution of (3.10) that are necessary in the study of the Anderson-
Bernoulli random perturbations of crystals.
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3.2.2 Existence of ground states

In this section, we state our results concerning the electronic state of a per-
turbed crystal. The host crystal is characterized by a periodic nuclear density
Vper € L2 ¢ (R?) such that the gap assumption (3.6) holds. The perturba-
tion is given by a distribution v € L2_.. (R?). The total nuclear distribution

unif
is then

Vnue = Vper + V.

In Theorem 3.2.1 below, we show that if v is small enough in the L121nif -norm,
then the rHF equation (3.2) admits a solution ~. This solution is unique in a
neighborhood of vy. The proof consists in formulating the problem in terms
of the density p, and using a fixed point technique, in the spirit of [64].

Theorem 3.2.1 (Existence of a ground state). There exist o, > 0 and
C > 0 such that for any v € L2 (RY) satisfying ||v| 2 . S ag, there is a

unif

unique solution vy € &1 1oc(L*(R%)) to the self-consistent equation
v=1(H <ep)
H=— A4V (3.11)
—AV +m?V = (Sd’l( (Py = v = Vper)

satisfying
oy = P“/oHLﬁmf <C HVHL?mif . (3.12)

We denote this solution by 7, , the response electronic density by p, = p~, —
Pro and the defect mean-field potential by V, =V — Vier.

For a local defect v € L2(R%) N L'(R%) such that ||| 2 < a, equa-
tion (3.11) admits a unique solution which coincides with the ground state
7 solution of (3.7)-(3.9) constructed in [24]|. Indeed, the solution =, given
in Theorem 3.2.1 is a solution of the defect problem (3.10). Moreover, in
the proof of Theorem 3.2.1, we prove that H has a gap around ep, thus
necessarily 6 = 0 in (3.10). As all the solutions of (3.10) share the same
density, (3.10) (thus (3.11)) admits a unique solution.

The ground state constructed in Theorem 3.2.1 is in fact the unique mini-
mizer of the "infinite" rHF energy functional. Indeed, following ideas of [65],
we can define the relative energy of the system with nuclear distribution vy,
by subtracting the "infinite" energy of 7, from the "infinite" energy of a test
state ~:

re. 1
E(7) = Trn, (H —ep) (= W)) + 5Dm (py = s 07 = ) -

This energy is well-defined for states v such that v — ~, is finite rank and
smooth enough for instance, but one can extend it to states in a set similar
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to K in (3.9). The minimum of the energy &£ is attained for v = v, =
1 (H < ep). Moreover, as H has a gap around e, £ is strictly convex and
vy is its unique minimizer.

In the following theorem, we show that if we confine the defect v to a
box of finite size, then the ground state of the system defined by the theory
of local defects presented in Section 3.2.1 converges, when the size of the box
goes to infinity, to the ground state of the system with the defect v defined
in Theorem 3.2.1. We denote by I'y, = [—L/2, L/2)%.

Theorem 3.2.2 (Thermodynamic limit). There exists o > 0 such that for

any v € L121nif (RY) satisfying Hl/||lemif < a., the sequence (%/lrL)LeN\{O}

converges in 61,100(112(]1%‘1)) toy, as L — .

3.2.3 Decay estimates

In this section, we prove some decay estimates of the mean-field potential
V., and the mean-field density p,, which will be particularly important to
understand the system in the presence of rare perturbations in the next
section.

Theorem 3.2.3 below is crucial in the proof of Theorem 3.2.7. Indeed,
we will need uniform decay estimates for compactly supported defects, with
growing supports and uniform local norms.

Theorem 3.2.3 (Decay rate of the mean-field potential and density). There
exists ae,C' > 0 and C > 0 such that for any v € L2(R?) satisfying
vl 2 < e, we have for R > 2
el 2
Ce (logR) ”V”Linif (Rd) 5
(3.13)

Vellzz . waverey T Ilovllze  wacre) <

where Cr(v) = {z € R%, d(z,supp(v)) < R}.

Remark 3.2.4. Using the same techniques as in the proof of Theorem 3.2.3,
we can prove (see 3.A.1) that there exist a, e, C' > 0 and C' > 0 such that
for any v € L2(R?) satisfying ||v|| 2 . S acand || g-1 < «, we have for
R 2 2 uni

—C' (1o 2
Vil szascrey + 100l 2@aeay < Ce™ OB ] fagay . (3.14)

FEstimate (3.14) gives a decay rate of the solution of the rHF equation for
crystals with local defects, far from the support of the defect. In particular,
it shows that p, € LY(R?). This decay is due to the short-range character of
the Yukawa interaction. In the Coulomb case, it has been proved in [33] that
for anisotropic materials, p, ¢ L*(R?).

The decay rate of V,, and p, proved in Theorem 3.2.3 is faster than the
decay of any polynomial, but is not exponential, which we think should be
the optimal rate.

147



Proposition 3.2.5 below is an important intermediary result in the proof
of Theorem 3.2.2. It says that the mean-field density p, and potential V,, on
a compact set depend mainly on the nuclear distribution in a neighborhood
of this compact set.

Proposition 3.2.5 (The mean-field potential and density depend locally on
v). There exists o > 0 such that for any B > 2 there exists C' > 0 such that
for any v € L2 . (RY) satisfying ||v|| 2 . < acand any L > 1 we have

unif

unif

C
Vi — VVLHHlQmif (B(0,L/48)) T v — pur, ”Lﬁnif (B(0,L/48)) = 758 iz
where vy, = vlp, .

In the same way, we obtain the following result which will be very useful
in the proof of Theorem 3.2.7. We prove that the potential generated by two
defects that are far enough is close to the sum of the potentials generated
by each defect alone in the sense of

Proposition 3.2.6. There exists o, > 0 such that for any 6 > 2, there exists
C > 0 such that for any vi,vy € L2(R?) satisfying ||v1]| 2 . vl 2 LS
and R = d(supp(v1),supp(r2)) > 0, we have

Wortvs = Vaalluz (0 o)) F 1P = Pallzz oy i)

C
< =5 (I, +laliz,, )-

Proof. The proof is the same as the one of Proposition 3.2.5 with v = v + 15
and L = 2R. ]

R/4B

3.2.4 Asymptotic expansion of the density of states

In this section, we use our previous results to study a particular case of
random materials. In the so-called statistically homogeneous materials, the
particles are randomly distributed over the space with a certain spatial invari-
ance. More precisely, the nuclear distribution (thus the electronic density)
is stationary in the sense

Vnuc('rk(w)ax) - Vnuc(wax + k),

where (74),cza is an ergodic group action of Z% on the probability set
(see Figure 3.1). One famous example of such distributions is the Anderson
model

Vnuc(wax) - Z Qk:(w) X(w - k)?

kezd

where, typically, x € C°(R?®) and the ¢’s are i.i.d. random variables.
The reduced Hartree-Fock model for statistically homogeneous materials was
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Perfect crystal Statistically homogeneous material

Figure 3.1: Example of a stationary nuclear distribution

introduced in [29]. The state of the electrons is described by a random self-
adjoint operator (y(w)),cq acting on L?(R?) such that 0 < y(w) < 1 almost
surely. The rHF equation is then

Y(w) =1(H(w) <ep) +6(w)
H(w) = —%A + V(w,-) almost surely,

—AV(w,) +m?V (@,) =[S (300 = e, )
(3.15)

where 0 < §(w) < 1y, (H(w)) almost surely. The solutions of (3.15) turn
out to be the minimizers of the energy functional

1
§unuc(7) = E <<_§A - €F> ’Y> + Qm(/’«/ — Vnuc, Py — Vnuc)7

where Tr (A) = E (Tr (1prAlr)) and

Dt = ([ [ #0¥ula ot dray)

Here, I' = [—1/2,1/2)% denotes the semi-open unit cube. Thanks to the
convexity of £, . it has been proved in [29] that the minimizers of £,
share the same density. Therefore, the Hamiltonian H solution of (3.15) is
uniquely defined.

In this study, we are interested in the particular case of random pertur-
bation of perfect crystals

Vnue(w, T) = Vper(m) + Vp(wam)

in the limit of low concentration of defects. We restrict our study to Anderson-
Bernoulli type perturbations, that is, we suppose that at each site of Z9,
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there is a probability p to see a local defect x, independently of what is hap-
pening in the other sites. More precisely, we consider the probability space
0 = {0, 1}Zd endowed with the measure P = (pd; + (1 — p)50)®Zd and the
ergodic group action 7i(w) = w.4. The defect distribution we consider is
then given by

vp(w,w) = D ar(w)x(@ — k)

kezd

where g, is the k™ coordinates of w and x € L?*(R?) with supp(x) C T.
The ¢;’s are i.i.d. Bernoulli variables of parameter p. If ||x|/;2 < a., then
d(w) = 0 almost surely and (3.15) admits a unique solution. For almost
every w, this solution coincides with the solution of (3.11) constructed in
Theorem 3.2.1. For convenience, we will from now on use the notation

Hy = Hper —€F,

where we recall that er is the Fermi level. We introduce the mean-field
Hamiltonian corresponding to the system with the defect v,

H,=Hy+V,, with V, (w,z)=Y,,* (pl,p — up) .

As V), is stationary with respect to the ergodic group (73),cz¢ and uniformly
bounded in © x R?, then by [125, Theorem 5.20], there exists a deterministic
positive measure ny(dz), the density of states of H,, such that for any ¢ in
the Schwartz space S(R)

/R p(@)ny(dz) = Tx (p(H,)) .

For K C 79 we define the self-consistent operator corresponding to the
system with the defects in K

Hy = Ho + Vg,
where

Vi =Ymx(px —vi),  vk=»_ x(-—k) and pg = py,.
keK

If |K| < oo, we denote by x(x) the spectral shift function [156] for the pair
of operators Hx and Hy. It is the tempered distribution in §’(R) satisfying,
for any ¢ € S(R),

Tr (o(Hr) — o(Ho)) = /R exc(a)g () do = — /R e (2)p(z) da.

In Theorem 3.2.7 below, we give the asymptotic expansion of the density
of states n, in terms of powers of the Bernoulli parameter p.
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Theorem 3.2.7. For x € L?>(R?) such that supp(x) C T' and K C Z¢ such
that |K| < 0o, we define the tempered distribution p by

(@) =~ 3 ()Wl (o).
K'CK
There exists ae > 0 such that if ||x|| ;2 < ac, then
(i) for j € {1,2}, pj = > kcwa. pi is a well-defined convergent series
in S'(R). o

(ii) for J < 2, there exists Cj > 0, independent of x such that for any
p € SR),

J
(np @) = (n0,0) = > (15, 0)| <Crlixlls sup  Nag(e)p’™,

1 a<(J+3)(d+1)
J= B<J+4+(J+2)d

where ng is the density of states of the unperturbed Hamiltonian Hg

o8
and Ny, () = sup,cp ‘xaﬁ )

In Theorem 3.2.7, we only present the expansion of the density of states
until the second order J = 2. The proof of the expansion up to any order
J € N should follow the same lines and techniques used here.

A result similar to Theorem 3.2.7 was obtained in [87] in the linear case.
Materials with low concentration of defects were studied by Le Bris, Anan-
tharaman and Mourrat [3, 2, 1, 119] in the framework of stochastic homog-
enization.

The proof of Theorem 3.2.7 follows essentially the proof of [87, Theorem
1.1]. It uses the decay of the potential related to each local defect. In [87,
Theorem 1.1, the linear potential is assumed to decay exponentially. In
our nonlinear model, the decay estimates established in Section 3.2.3 play a
crucial role in the proof.

The rest of the chapter is devoted to the proofs of the results presented
in this section. In the next section, we study the dielectric response of the
crystal to an effective charge perturbation. The results of Section 3.3 will be
used in later sections.

3.3 Dielectric response for Yukawa interaction

In this section, we study the dielectric response of the electronic ground
state of a crystal to a small effective charge perturbation f € L121nif (R9).
This means more precisely that we expand the formula

Q=1(Hy+ f# Yy <0)—1(H <0)
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in powers of f (for f small enough) and state important properties of the first
order term. The higher order term will be dealt with later in Lemma 3.4.1.
For Coulomb interactions and local perturbation f € L2(R%)NCq(R?), where
Co(R?) is the Coulomb space, this study has been carried out in [33] in
dimension d = 3.

The results of this section can be used in the linear model or the mean-
field framework. In the reduced Hartree-Fock model we consider in this
study, the effective charge perturbation is f = p, — v, where p,, is the elec-
tronic density of the response of the crystal to the nuclear perturbation v
defined in Theorem 3.2.1. Expanding (formally) Qs in powers of f and using
the resolvent formula leads to considering the following operator

1 1
Q=5

2ir Jo z — Hy

1
[ Y ——
Z_

d
H, "

where C is a smooth curve in the complex plane enclosing the whole spectrum
of Hy below 0 (see Figure 3.2). By the residue Theorem, the operator Q1 ¢

C
O'(Ho)

Figure 3.2: Graphical representation of a contour C C C enclosing o(Hp) N
(_007 O] :

does not depend on the particular curve C chosen as above. We recall that
Vper 18 —A bounded with relative bound 0. Thus Hy is bounded below
by the Rellich-Kato theorem [132, Theorem X.12|. Theorem 3.3.1 below
studies the properties of the dielectric response operator £ : f — pg,. ; and
the operator (1 + [Z)_l, which will play an important role in the resolution
of the self-consistent equation (3.11). In particular, it gives the functional
spaces on which £ and (1 + £) " are well-defined for both local and extended
charge densities. It also says that (14 E)fl is local in the sense that its
off-diagonal components decay faster than any polynomial. We consider
H~Y(R?), endowed with the scalar product

1 F)gp)
fe

<f7 g>H*1 = (27T)d ., |p|2 T2

Theorem 3.3.1 (Properties of the dielectric response). We have

(i) The operator
L: HYRY) — HYRY)
f = _le,Jw
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1s well-defined, bounded, non-negative and self-adjoint. Hence 1+ L is
inwvertible and bicontinuous.

(i) The operator L is bounded from H~'(RY) to L2(R?) and 1/(1 4 L) is
a well-defined, bounded operator from L*(R?) into itself.

(iii) The operator

L: L121nif (Rd) - Ltzlnif (Rd)
f = _le,Jw

is well-defined and bounded. The operator 1+L is invertible on L? .. (R9)
and its inverse is bounded.

(iv) There exist C > 0 and C" > 0 such that for any j,k € Z such that
|k —j| > 1, we have

K

Proof. The proof consists in the following 6 steps. In the whole chapter
C >0 and C’ > 0 are constants whose values might change from one line to
the next.

1

2
—1 .
F+]1+£ I'+k

< Ce=C"loglh—i])
B

(3.16)

Step 1 Proof of (i). The proof is similar to the one of [33, Proposition 2],
with the Yukawa kernel Y,,, instead of the Coulomb kernel. In the Yukawa
case, H~1(R?) plays the role of the Coulomb space. The proof of [33, Propo-
sition 2| can easily be adapted to our case. We skip the details for the sake
of brevity.

Step 2 Proof of (i). Let f € H='(R%). Then Y, * f € L?>(R?) and
2 2
. <c/ 7o) dp=C|f|2
p < —— —dp= _
)2 re |p|* +m? "

(3.17)
Therefore, by [33, Proposition 1], Q15 € K, where K has been defined
n (3.9), and Lf = —pq,, € L*(R%). Arguing by duality, we have for
any W € L%(RY),

‘f(p)

¥« fllzz = ‘Sdilr /]Rd (!MQ +m2

T (QuW) = [ pa,W (318)

Besides, by the Kato-Seiler-Simon inequality [145, Theorem 4.1] for d < 3

. _d
Vp>2, [[f(=iV)g()ls, < m) # | fllps 9l e (3.19)
and the fact that

(z— Hp) ' (1 — A) is uniformly bounded on the contour C, (3.20)
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we have

1
Yo x f

L*(R?
Z—HO Z—HOWGGQ( ( ))

and

1 1 1
T =|— ¢ T Yo _ d
| T(Ql’fW” ‘Ziwi : (z—HO >l<fz—HOVV> &

< CNYm* fllp2 (W -
(3.21)

The bound (3.20) follows from the following lemma.
Lemma 3.3.2. Let W € L2 .. (R?). Then there exists C > 0, depending

unif

only on the L2 .. -norm of W, such that for any z € C\ o(—=A + W), we
have

_ 1+ |z
s = Cqscarwy

[(FA+1)(-A+W -2
In particular, if A is a compact set of C\ o(—A+ W), then (—A+1)(—A+
W — 2)~1 is uniformly bounded on A.

Proof. The proof of Lemma 3.3.2 follows the proof of [24, Lemma 3|. For
¢ > 0, we have

(~A+W —z+c)(-A+c) =1+ (W —2)(-A+c)" L.

As W is —A-bounded with relative bound 0 [133, Theorem XIII.96], then
for any a > 0 there exists b > 0, depending only on ||[W||,2 . such that for

any ¢ € L?(R9)

IV =2 (=8 + ) ¢ll ey < @[ =ACA+0) 70| pa(ry
+ O+ 12D [(=A + 70|l 12 ga)

b+ |z]
< (o+ 225 olsmo.

Choosing a = + and ¢ = max {1,4(b + |z|)}, we obtain

[(—A+o)(-A+W —z+0)7 Yz <2

Finally, as
_A _ _
+1 glgl and A+W—-z+c¢ <14 c
—A+clg” c “A+W -2z | d(z,0(—A +W))
<C 14|z

— d(z,0(—A+W))’
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then the operator

A+
(CA+1) (A+W —2) 1= _Aic(—A+c)(—A+W—z+c)*1
-A+W—-z+c¢c

—A+W -2

satisfies

|carnarw - < ClGoCA+W))

In view of (3.17), (3.18) and (3.21), it follows that

'/Rd“f)W' <Ol W e

We deduce that
LSz < Clfllg--

We now prove that (1 + £)~! is bounded on L?(R?). Let g € L?(R?) and
f € HY(RY) such that (1 + L)f = g. Then, f = g — Lf € L*(R%). As
1/(1 4 L) is bounded from H~!(R?) into itself, we have

[z < Cllglg— < Cligll 2 -

Therefore, as £ is continuous from H~'(R?) to L2(R?) ,

1fllze = llg = £fllz2 < llgllze + 1£F 12 <llgllzz + ClF -1 < Cliglz

which concludes the proof of ().

Step 3  Proof of the first part of (iii): L is well-defined and bounded on
L2 . (RY).  First, we consider a bounded operator A € B(L?(R%)) and
prove that (z — Hg) 'A(z — Hy)! is locally trace class. For xy € L°(R?)
and z € C, we have by (3.20) and the Kato-Simon-Seiler inequality (3.19)
that x(z — Ho) 'A(z — Hp) !y is trace class and that there exists C' > 0

independent of z € C such that

T ! A ! < ! A !
g XZ—HO Z—HOX - XZ—HO Z—HOX

<

S1
1
Z—H()

Allg

1
X
Z—HO Sy ”

2
< CllAllg lIxIz: -

(GD)
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It follows that the operator (z — Ho) 'A(z — Hy)™! is locally trace class
and that its density p, is in LL _(R?). We now show that p, is in fact in
L2 . (RY). Let k € Z¢ and u be a non-negative function in L=(I' + k). It

holds, taking x = y/u, that
/ pau| = ‘ / p=x
Rd Rd

By linearity, we deduce that p, € L>(R%) and

1 1
< .
T (xo Ao )| < €Al bl
(3.22)

lpzllpz < llpzllpee < CllAllg-

unif
As all these estimates are uniform on the compact set C, the operator

(2im) " $o (2 — Ho) ' A(z — Hy) ' dz is locally trace class and its density p
is in L2 . (R%) and satisfies

unif

lollz < C Al (3.23)

We now consider the case when A = Y,, * f is a potential generated by a
charge density f € L2 .. (R%). The following Lemma gives the functional

unif

space Y, * f belongs to when f € L2 .. (R9).

unif

Lemma 3.3.3. Let f € L! .. (RY) and Y € LY (R?) such that

unif

S Y o rery < o0, (3.24)
kezd

for some 1 < p,q < oco. Then, the function Y x f is in L7 (RY) with

1+1/r=1/p+1/q and there exists C > 0 independent of f such that

Y * f||L1T1nif <C Hf“Lﬁm :

if

The proof of Lemma 3.3.3 is exactly the same than the one of [29, Lemma
3.1], we omit it here. As Y, satisfies (3.24) for p = 2, we have

Yo f€L¥RY) and Y fllpee < C I fllp2 - (3.25)
Therefore, by (3.23)
Hle’fHLﬁmf < C ”Ym * f”LOO < c ”f”L?mif )

which proves that £ is well-defined and bounded from L2 .. (RY) into itself.
This concludes Step 3.

In the rest of the proof, we use a localization technique. We will thus
need Lemmas 3.3.4 and 3.3.5 below. Lemma 3.3.4 gives an estimate on
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the commutator between the dielectric response operator £ and a localizing
function in both L?(R%) and L2 . (R?). Lemma 3.3.5 gives a decay rate of
a real sequence satisfying a recursion relation that will be satisfied by the
localized sequence. The proofs of Lemmas 3.3.4 and 3.3.5 are postponed

until the end of the proof of the proposition.

Lemma 3.3.4. Let x be a smooth function in C°(RY) such that 0 < x <1,
x =1 on B(0,1) and x = 0 outside B(0,2). For any set I C Z¢ and R > 1
we denote by Brp = Uger (B(0,R) + k) and by x1.r(z) = x(d(z,I)/R).
The family of functions (x1,r)r>1 satisfy 0 < xrr <1, xt,r =1 on By R,
X1,r = 0 outside By or and

R|Vxr1r(z)|+ R? |Axr.r(x) <C ae., (3.26)

where C' is independent of the set I. We denote by nyr =1 — x1,r- Then,
there exist C > 0 and C' > 0 such that for any I C Z% and any f € L*(R?),
we have'

01,8 * f =Y (0,8 )| g2 + [l00,5: £] f1] 2
<

C —C'R
R (6 Hl(Rd\BI,aR)ﬁBl,R/zf ‘H—l + HlBI,3R\BI,R/2fHH_1)
C

—-C'R
< (RN gz + | Lmraminad]| ) (3.27)
and for any f € L2 (R9)

1nr,8Ym 5 f = Yo = (o f)ll g2+ lrms £1 £l 2

C

—C'R
< S (O lig, + [15ram50m

. (3.28)
Lﬁnif >

Lemma 3.3.5. Let (zr)r>0 be a non-increasing family of real numbers such
that for any R > 0,

C C
xR < =€ CBeo+ YR/ (3.29)

for given C > 0 and C',a > 0. Then, there exist C > 0 and C' > 0 such
that for any R > 2 ,
xR < Ce 108 R 50 (3.30)

Consequently, for any B > 0 there exists C' > 0 such that for any R > 1
C
We now proceed with the proof of Theorem 3.3.1. We first prove (iv),
then we prove that 1 + £ is invertible on L2 .. (R%).

unif

Tn the whole chapter, we use the convention f * gh = hf x g = h(f * g), that is, the
convolution of functions is higher-precedence than the multiplication.
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Step 4 Proof of (iv). We explain how to use Lemmas 3.3.4 and 3.3.5 to
prove (3.16). Let k € Z¢ and for R > 1, let g = ngky,r and Br = By g as
defined in Lemma 3.3.4. Let g € L2(R%) and denote by f = (1+£) ' 1p 19
For R > 1, we have

nr (f + Lf) = nrlrrg = 0.

Therefore

I+ L)nrf =nrf+ Lorf = Lorf —nrLf = [L,nR] f.
Since 1/(1 + £) is bounded on L?(R%), it follows that

1
=||l——= <
sl = | g 1eonnl o] < €l 1
C _o C
< 2Rl + 5 ||t
(3.32)

where we have used Lemma 3.3.4 in the last step. Denoting by zp =
Hle\BQRfHL2’ the estimate (3.32) leads to

/ C
Ry + RYR/A:

Therefore, Lemma 3.3.5 gives that there exist C' > 0 and C’ > 0 such that
for any R > 2

Ineflle < wpje < CeCMBR 3 = Cem €M R | 7|,

< CefC’(log R)?

x <gef
R=Tr

HgHLQ(I‘Jrk)a

where the last inequality follows from the fact that (1 + £)~! is bounded on
L?*(R%). Finally, as Ir4j < Mg—j|/1-1/2, then

Step 5 Proof that 1+ L is surjective on L2 .. (RY). Let g € L2 .. (RY) and

unif unif

consider g7, = glr, for L € 2N+ 1. As 1 + L is invertible on L?(R%), there
exists fr € L2(R?) such that

el _ 2 -’ —i?
2 < Ce—C' (loglk—j)) HgHLQ(Hk) < Qe loglk=iD) llgll 2 -
L

1
I 1+—£1F+k9

(1+L)fL=y9L (3.33)

and

1
”fL”Lanif:SUP 1F+j1+—£ Z Irtrg

; d
ez kE€Z4T 2
1
< sup E F+j1+—£11“+kg
i d
JELT pezanr, L2



Using (3.16), we obtain

et k|)?
Ifzllpz =~ < sup C > (logli—kl) 91l 2oy + Cllgllzz . < Cllgllz
TELT pena\(5)

2+ (R?) is known to be
the dual of ¢1(L?) = {f € L2 (RY), Sy cza 1 F L2 rgry < OO}, which is a

separable Banach space. Therefore, since the sequence (f1)r>1 is bounded

for a constant C independent of L. The space L?

in L2 .. (R9), there exists a subsequence of (f)r>1 (denoted the same for
simplicity) and f € L2 _.; (R?) such that f; —, f in L2 ; (RY) and
£z, <limint fzlyz < Clglla,, (3.34)
un 00 uni uni

We now want to pass to the limit in the sense of distributions in (3.33). Since
C>(R%) is dense in £'(L?), the sequence (f) converges to f in D’(R?). Next,
we need to show that for any ¢ € D(R?),

[ et-me—o (3.35)
Rd — 00

We denote by p. 1, the density associated with the operator (z — Ho)_1 Y, *
(f = fu) (z = Ho)™". Then

[ et-me=g=4 [ pseds

and, as ¢ has compact support, we have by (3.22) and (3.25)
‘/ Pz,LYP
R4

where the constant C' > 0 is independent of L and z € C. By the dominated
convergence theorem, it is therefore sufficient, for proving (3.35), to show
that for any z € C

< C Yo (f = D)l lelln < CNF = Fllgz lellp

< Cllgllgz_ llellza

/Rd pZ’L(pngoO. (3.36)

For R > 1, we define p, 1 ou,r and p. rinr to be the densities associated
with the operators

1 1 1 1

E— Lra\so,.7) Ym*(f =fr) — o and  — R Lpo,r) Ym*(f=fr)— R

respectively. Therefore p, 1, = p. rout,R + PzL,inr. Let € > 0. In the
following, we will choose R large enough such that [ p, 1 ou,re is small
for any L. Then, using the weak-x convergence of f to f we show that
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[ Pz Linre is small for L large enough. Reasoning similarly than in the
proof of (3.22), we find

[ peae] <€l il (3.37)

it
2

X
G2

Now, we need the following lemma, a modified version of [87, Prop. 4.1].

Lemma 3.3.6. Let W € L2 .. (R%) and H = —A + W. There exists C > 0

and C' > 0, depending only on |W|| 2 _» such that for any x € L*(R%) and

n € L>®(RY) satisfying R = d (supp(x), supp(n)) > 1, and any z € C\ o(H),
we have

1 2

1
Ira\p(o,r) 7= VP

lra\po,r) 7= 7, V-

.

(SP)

HX(Z—H)*In‘

o = Cer(2)e™ O Il oo I 2

where c1(z) = d(z,0(H))™Y, ca(2) = d(z,0(H))/(|z| + 1). In particular, if
A is a compact set of C\ o(H), then

-1 el
[z =m)7al| < 0 il Il

where C and C' do not depend on z but depend, in general, on A.

Proof of Lemma 3.3.6. We have

HX(Z—H)_lﬁ‘

2
= / X ()G (2, y)n(y)|* d dy,
S R xR

where G (z,y) in the kernel of (z — H)~*. By [144, Theorem B.7.2] and [57,
Corollary 1| we have for |z —y| > 1

1G.(2,y)| < Cey(2)e ¢ 2@yl
where C' > 0 and C” > 0 depend only on ||[W|,2 . Therefore

2 , -
HX (z—H)™! 77H6 < Cey(2)? Hn”%w HXH%Q sup / 1Supp(n)(y)€_20 c2(2)la—yl g,
2 z€supp(x) /R4

< Cer(2)? 7o X172 e 2R,
]

Going back to (3.37), we deduce using Lemma 3.3.6, that for R large

enough
1
‘ IgavBo.R) = VP

el
SCH\/SD:I:H[Qe CRa
(SP)

160



As |If - fLHL?mif <C HgHLﬁnif , we obtain

‘/dpz,L,out,R(P
R

We can thus choose R such that (3.38) is smaller than /2. Besides, we have

2 -’
< Cllgllyz_ IlpllZa e ™™ (3.38)

1 1
mre=Tr (1p0nY, -
/Rd Pz,L,in,RY = LI ( B(O,R)Ym * (f fL)Z—HO(pZ—H())

= / 1g(o,r) Ym * (frL — f)p,
R4

where p is the density associated with the trace class operator (z — Ho) " ¢ (z — Hg) ™"
For R’ > 0, we have

‘/ 1p(o,r) Ym * (fr — f ‘ (z—y)(f = fr) (y) dyp(z) dx
OR ]Rd
—y) (f = fr) (y) dyp(z) dx
B(0,R) JB(0O,R)
+ / Yl = 9) (f = f1) (v) dy ol -
R4\ B(0,R’) Le°(B(0,R))
(3.39)

As'Y,, is exponentially decaying, we can choose R’ such that the second term
of the RHS of (3.39) is smaller that €/4. As to the first term, by the weak-x
convergence of fr to fin L2 .. (RY), we have that

L—o0

muaz/ Yolz —9) (f — f) ) dy  — 0,
B(0,R)

for any x € B(0, R). Besides, we have for a.e. € B(0, R)
he@) < Ihellym < CIf = fillz < Cliglza

(see (3.25)). By the dominated convergence theorem, it follows that one
can choose L large enough such that the first term of the RHS of (3.39)
is smaller that /4. This concludes the proof of (3.36), thus the proof of
(3.35). We are now able to pass to the limit in (3.33), which concludes the
proof of the surjectivity of 1 + £ on L2 .. (RY). In view of (3.34), we have
shown that there exists C' > 0 such that for any g € L2 .. (RY), there exists
feL? . (RY) such that

unif

A+0)f=g and [flp <Clalz - (3.40)

unif
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Step 6 Proof that 1+ L is injective on L2 . (R?). Let f € L2 .. (RY) be

unif
such that (1 + £)f = 0. For R > 1, let xr = X{o},r as in Lemma 3.3.4.
Then,

XrS + xrL(f) =0,

and thus

(1+ L) (Xrf) = LxrS — XRL(f) = [L,XR] [-

As g := [L,xRr] f € L*(R?%), then the solution ¢ = xrf of (1 + L) = g is
unique and satisfies |||, 2 e lgll 2 . by (3.40). Therefore

Ixrfllzz < ClEXR) fllz -

if

Using Lemma 3.3.4, we have

C
Ixnfllzz,, < CNExR fliz, = ClEnR) flle, < 5z, - (3:41)

As [[xrfll 2 _ Is anon-decreasing function of R converging to || f|| 2 _ when
R — +o00 and the RHS of (3.41) goes to 0 when R — 400, then || f||,2 =0

and f = 0; which proves that 14 £ is injective. The boundedness of 1/(1+L)
then follows from (3.40). This concludes the proof of Theorem 3.3.1. O

In order to complete the proof of Theorem 3.3.1, we need to prove Lem-
mas 3.3.4 and 3.3.5.

Proof of Lemma 3.3.4. For simplicity, we use the shorthand notation xp =
XI,R; MR = n1,r and Bg = By R.

Step 1 Proof of (3.27). We have

77Rf * Ym - Ym * (77Rf) =1NR (_A + m2)71 f - (_A + mz)il 77Rf
We now use that [B,(z — A)™'] = (z — A)"'[B, A] (= — A)~! and the fact
that [ng, Al = —(Ang + 2Vngr - V). We thus obtain

MRS * Yo — Yo % (N f) = (=A +m?) "' [nr, A] (<A +m?) "' f
1

= — (A +m3) " ((Anr) + 2(Vng) - V) (A +m2) " £,
(3.42)
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As Vnp = —Vxgr and Ang = —Axpg are supported in Bogr \ Bg, then,
by (3.26),

C _
InRf % Yin = Y+ (0Dl < 75 || 1amie (=2 +m2) 7 ]

L2

+ % |53V (A +m?) ™! fH(LQ(Rd))d '

(3.43)
To bound the first term of the RHS of (3.43), we write
(-a+m) " f@) = [ Yolo = )5y
= Jea Yi(z = y)f ()L ra\Bsp)UBR» (Y) dY
+ | Yole =) f(W)1Byp\Bg,, (v) dy (3.44)

R4
Thanks to the exponential decay of Y, and the fact that for any x € Bog\ Bgr
and y € (R%\ Bsp) U Bz, |2 — y| > R/2, we get

—1
H132R\BR (_A + m2) fl(Rd\BsR)UBRm 12

_mR
4

< Ce” < Ce

L2
Controlling in the same way the second term of the RHS of (3.44), we deduce

H1B2R\BR (—A + m2)—1 !

mR
4

‘Y% * (fl(Rd\BaR)UBR/z) ’fl(Rd\BSR)UBR/Q

H-2'

PR KT

+C HlBSR\BR/2f ’H,g :

We proceed similarly for the second term of the RHS of (3.43) using that

Wy, = VY, the inverse Fourier transform of ¢ ‘Sd_1| — is exponen-
’ Ip|*+m?”

tially decaying and satisfies |[Wiy, * g|[;2 < ||g|| -1 for any g € H™1. We
get

C _mr C
Inrf * Ym — Yo * (UBf)HH2 < Ee 4 Hl(Rd\BgR)uBR/QfHH_I+E H11333,\131%/2fHH_1 .
3.45

We turn now to estimating ||[ng, £] f|;2. We know that [ng, L] f is the
density associated with the operator

—NRQ1f + Qiyps

1 1 1 1 1
= — c( HYm*(an)Z_ - Yo f )dz

2im 2 — Hy H, ", H, Z— H,
1 1
- = % — Y, d
1 1 1
- Y, dz. 3.46
= C{nR,Z_HJ e S (3.46)
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We denote by r1 and ry the densities associated with the first and second
terms of the RHS of (3.46) respectively. For any W € L?(R?), we have

1 1
/Rd""lw‘: %/CTT (Z—Ho (Ym*(an)_nRYm*f)

< C Y = (nrS) = nRYm = fllp2 (W2, (3.47)

W> dz

z — 119

where we have used (3.19) and (3.20). Therefore, in view of (3.45),

171l 2 < C[[Ym * (nrf) = nrYm * fl L2
mR
4

<gef
~ R

(3.48)

’H*l.

C
i !

‘1(Rd\BsR)UBR/2f

It remains to estimate ro. For any A € Go(L*(R%)) and W € L?(R?), the
density p associated with the operator (—A + 1)"Y2 A (= A + 1) 7Y/ satisfies

Lo < Vi, | o) (1o 1) v

< CIW| 2 [|A]le, -

L4

[All,
L4

Therefore
ol < CllAllg, - (3.49)

Applying (3.49) for A = (=A +1)"/? [ng, (2 — Ho)™!] Yms f (z—Ho) ™' (-A + 1)/,
we obtain

N[
=

dz,
(D)
(3.50)

AN

Irall,2 < Cyi H(—A+ 1) Yot f(—A+1)"

Z—HO

where we have used that C1(1 — A) < |z — Hp| < C3(1 — A), whose proof is
similar to the the one of Lemma 3.3.2. As the commutator [ng,A] has its
support in Byg\ Bg, we consider separately leSR\BR/Q and fl(Rd\BgR)UBR/Q'
Using the same techniques as above, we obtain

1 1
—Yin % (1BsmBryaf ) (-2 +1)72

o e

G2
Ym * (1B3R\BR/2f) H
(SP)

(IRl oo + 1081 ) || Yon # (LS )|

<C|[(-a+1)7% e, 2|

Bllz— Hy

IN

L2

(3.51)

IA
xQ Q

T
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Far from the support of [ngr, A], we have

1

1 _
7}[(]Ym * <1(Rd\BgR)UBR/2f> (—A+1)2

a7 )

S2
_1
<CO|[(=a+1)7 (Ang -2V - Vng)
1B,p\B Irik
kgz:d SRz = Ho (GP)
X ‘ Ipy i Y * (1(Rd\BgR)UBR/2f) (—A + 1)_5 (352)
In dimension d < 3, H'(R?) < L*(R?). Therefore
H1p+kYm x <1(Rd\BSR)UBR/2f> (—A+1)72
1

<C HlFJrkYm * <1(Rd\BaR)UBR/2 > —A+1)2 &4
<C HlFJrkY * <1(Rd\B3R)UBR/2 >‘
= CHY * ( (R\Bsr)UBR/2 )HHl (T+k) (3:53)

Using the exponential decay of Y;,, we obtain

< O~ 5k (R\Bsr)UBpg/2)

‘]‘(Rd\BgR)UBR/QfHH_l .
(3.54)

HY *< (R\B3r)UBR/2 >HH1 (T+k)

In particular, for k& € Z%n (B5R/2 \B3R/4) (the pink part in Figure 3.3
below), the distance between k and (R?\ Bsg) U Bpgsa (the blue part in
Figure 3.3) is greater than or equal to R/4 and

SR SR
4 2
0 = R 7R 3R

Figure 3.3: Schematic representation of R used in the proof of Lemma 3.3.4.

—mB _mq(k,(RM\Bsg)UB
Hym* (1(Rd\BSR)uBR/2f)HHl(FJrk) < Ce'io ¢~ T4 RBN\BsR)UBR)2)

x Hl(Rd\BaR)UBR/QfHH_I . (3.55)

Besides, using Lemma 3.3.6 with n = 1p, .\, and x = 1p4x, we obtain

1

1B2R\BR > — Hp Iri < Ce~¢"d(kB2r\BR)

(GD)
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In particular for k € Z%\ (B5R/2 \B3R/4), we have d(k, Bor \ Br) > % (see
Figure 3.3) and

1

_on
Lpan\ng y — g Ir+k|| S Cem 2 ie d(k.Bar\Br) (3.56)

(CP

Combining (3.52), (3.53), (3.54), (3.55) and (3.56), we obtain

_1 1 _1
H(—A + 1) 2 [nR,A] > Ve Ym * (1(Rd\BSR)UBR/2f) (—A + 1) 2

— Hy Sy
c —C'R —C'k
= Ee Z € ! Hl(Rd\BSR)UBR/TfHH_l
kezd
C
S —€ 'R “1(Rd\B3R)UBR/2f“H_I ° (357)

This completes our estimate on ra. Indeed, in view of (3.50), (3.51) and (3.57),
we deduce that

C _cr ¢
Irallze < R° Hl(Rd\Bi’)R)UBR/QfHH—I TR HlB3R\BR/2fHH—1 ’

which concludes the proof of (3.27).

Step 2 Proof of (3.28). The proof of (3.28) for functions in L2 ., is similar
to the one of (3.27) for L? functions. We sketch here the main steps of the
proof, and only highlighting the differences. Let f € L2 .. (R?). Using (3.42),

unif
we have

NRYm * [ =Y x (qrf) = Y nrYm * (Ivsxf) = Yin # (nr1rssf)
kezd

= (A +m) T (Anr) +2(Vir) - V) (A +m®) g f
kezd

Therefore

InRYm = f =Y % (rf)laz,, < C (=5 +m®) nrYm * f = Yo x (e )| 2
S CllANRY m * [ 4 2VnR - VY  fl| 12

if

C C
< R2 HlB2R\BRYm * fHLﬁmf + R HlB2R\BRVYW * fHLﬁnif :
(3.58)
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To bound the first term of the RHS of (3.58), we use the exponential decay
of Yy, the fact that Yy, € £1(L') and Lemma 3.3.3. We get

“1BQR\BRYm * fHLﬁnif S H1B2R\BRYW * <f1(]Rd\BgR)UBR/2) ‘ 12 "

+ HlB2R\BRYm * (flyEBSR\BR/z) ‘

_mR
<e 4 HY% * (fl(Rd\B:’,R)UBR/?)‘

2
Lunif
L2

+ [+ (P10
unif

unif >

2
Lunif

I T

_mR
<o (el

As VY, is also exponentially decaying and is in £!(L!), we proceed similarly
for the second term of the RHS of (3.58). Finally we obtain the stated

inequality
Lanif > .

(3.59)

C/(
Yo £ = Yo (g, < G (€W,

if

+ HlBsR\BRmf‘
We turn to estimating ||[ng, £] f]|;2 .- By (3.46), we have that

MR, L] f =71+ 1o + 712
where 71, r91 and ro9 are the densities associated with the operators

1 1
2im Jo 2 — Hy

(Yo * (nrS) = 1RYm * [) dz,

Z—HO

1 1 1
% g [UR7 Ho] Yo * <1BSR\BR/2f> z—iHodZ’

Z —
and

1 1 1
% |, [771% P HJ Yo * (fl(Rd\BgR)UBR/2> Z—iflodZ’
which are now locally trace class operators. By (3.23) and using that, in
dimension d < 3, H2 .. (RY) — L>(R%), we find

nif

Irillze < C Y % (e f) = 18Yim % fllpoe < C (Yo 5 (0f) = 1Yon * L2

unif
C/( _con
SEG M@N+W%wmﬂxﬁ)
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where we have used (3.59) in the last step. Similarly for 21, since ||Ang||; -+
VRl < C/R, we have

1
lraallzz < ' 152y A S Ym (1BSR\BR/2f)HB

< H((A”R) +2(ViR) - V)

)

(3.60)

< % HlBSR\BR/2

As to 799, it is actually in L?(R?) and

N

_ 1
el <zl < |-+ 7 e &) Vo (e o)

(GD)

C( _on
<G (= + sl ) 00

The proof of (3.61) is exactly the same than the proof of (3.57), except
that in (3.54), we use the inequality ||Y;, * fll;ec < C|f|l;2 . instead of

the inequality ||Yy, * fll;n < C||f|l-1. This concludes the proof of the
lemma. O

We pass now to the proof of Lemma 3.3.5.

Proof of Lemma 3.3.5. To prove (3.30), we denote by vy, = z4n and b, =
Ca e 9" for n € N and a > o = max {a,2}. By the assumption (3.29),
(zg) is non-increasing. Thus z4n/q < Zan-1 = Y1, and we have

C C
Yn < bnxO + oz"/a < bnxO + _yn 1-

We first study the sequence z, defined by the induction relation
C

Zn = Jzn,l, zZo > 0.
We have

cc ¢ cn
an an 1 EZO = 7an(n+1)/220

We then show that y, < Cz,. Indeed, we have

Zn = ——

Yn < bnxO + = Yn—1-
n—1
Thus
Un ooy Yne <Z—x0—i——
Zn ~ Zn Zn—1 —
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As the series of general term
—n—C'a™
bn Ca"e —C’a"—l—é log a+C"'n
Zn Cna* n(n2+1)
is convergent, then

Yn < Czy, (x(] + yO) < Cznan

where the constant C' is continuous as a function of the parameter a. We
now go back to xr and deduce that for any n € N\ 0 and R = o™, we have

_r1os(R)? | urlog(R) _ o los(R)?
¢ log(a) +C log(a) o S Ce log(a) xQ- (362)

zr < Ce

As (3.62) holds true for any « € [ozo, ag], we deduce that there exists C' > 0
independent of «, but depending in general on a, such that for any R > 2,

2
xp < Ce” 18R g

which concludes the proof of the lemma.
O

3.4 Proof of Theorem 3.2.1 (Existence of ground
states)

Let us now establish the existence of a ground state for the perturbed crystal

in the rHF framework. The proof of Theorem 3.2.1 is a consequence of our

results on the operator £ stated in the last section, and of the properties

of the higher-order term in the expansion of @y for a charge distribution

fer?  (RY.

unif
To solve the self-consistent equation (3.11), we first formulate the system
in terms of the response electronic density p = p — p,, as follow

p=pQ
Q = lHy+v,<0 — LHy<o0 (3.63)
—AV, +m?V, = ‘Sd_l‘ (p—v).

Indeed, if p is solution of (3.63), then v = 1(Ho + Yy * (p — pyy —v) < 0)

solves (3.11). For a charge density f € L? . (RY), we expand
Qr=1(Ho+Ymnxf<0)—1(Hy<0)

as powers of f when f is small. For this purpose, we assume that

d(c? J(HO)) > 9,
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where g = d(0,0(Hp)) and C is now a smooth curve in the complex plane
enclosing the whole spectrum of Hy below 0 and crossing the real line at 0
and at some point ¢ < info(Hy) — g (see Figure 3.2). Let us recall that
for V€ L¥(RY), o (Hy+ V) C o (Ho) + [~ |Vl s |Vl ] Therefore if
IVl ~ < g, then Hy+ V has a gap around 0 and o (H) C [info (Hp) —
g,+00). For such a V', we have using Cauchy’s residue formula,

1 1 1 1

=1(Hy+V<0)—-1Hy<0)=-— ¢ ———dz — —
Q (Ho+V <0) (Ho <0) i o H, -V ‘g oy

dz.

By the resolvent formula, we obtain

1 1 1
- v d
@ Qiﬂj{;z—Ho . _Hy-V%"

1 1 1 1 1 2 1
_ = 1% dz + — 1% dz.
Qiﬂj{;z—Ho > — Hy Z+21’7rj({;<z—Ho > —Hy-V "

Therefore for f € L2 .. (R?) such that || f * Y| 1 < 9,

unif

Qr =Qif+Qay, (3.64)

where ()1 s has been defined and studied in Section 3.3 and @2, ¢ is defined

by
- 1 1 2 1
_ - Y, dz.
@21 2i777£<z—H0 m*f>  —Hy—Y v f "

We give some properties of the second order term @27 ¢ in Lemma 3.4.1 below.
Using the decomposition (3.64), equation (3.63) becomes

P=PQuy TPg,, = L=+, - (3.65)
Following ideas of [64], we recast (3.65) as

Sz’ T T LlGewy

p (3.66)

In Proposition 3.4.2 below, we show that for v small enough, the operator
G, :ip— LA+L) v+ +L)7" P55(p—1)
is controlled in the L121nif norm by the nuclear perturbation v. This will
conclude the proof of Theorem 3.2.1.

admits a fixed point, which

Lemma 3.4.1 (Properties of the second order term). There exists §. > 0
and C > 0 such that for any f € L2 (RY) satisfying || f|| 2 . < O, the

unif
(RY) and

operator @27f' 1s trace class, the density PGy s 8 in L?mif

2
<OlfI -

e, :

2
Lunif
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Proof. Since [|Yy, * f|l; < Co HfHLsz (see (3.25)), we can choose 0. =
g/2Cy, where, we recall that ¢ = é(0,0‘(H@)). In this case, (z — H —
Yy * )71 (—=A + 1) and its inverse are uniformly bounded w.r.t z € C (see
Lemma 3.3.2). Using the exact same procedure as in the proof of (3.23), we
obtain that élf is trace class, PG, € L2 . (RY) and

unif

g,y < €| fvms st vmras]| <o st <cunizy,.
) B uni
which concludes the proof of the lemma. O

Proposition 3.4.2. There exists o, e > 0 such that if |||, 2 S ac, then

gy : BLﬁnif (E) - BLﬁnlf (E)
L 1
P TV T PG,

is well-defined and contracting on Br2 (e) = {f € L2 . (RY), £l .2 LS 6}.

Thus, it admits a unique fixed point p in the ball By , (€). Moreover p sat-
1sfies
loll e < Clvllye (3.67)

for a constant C' independent of v.

Proof. We want to use Lemma 3.4.1 to show that G is well-defined on a small
ball of L2 .. (R 4). Here, the charge distribution is f = p—v. We thus need to
choose a, and ¢ such that [|p — v 2 . < ol 2 Lt IAIE L Setac <,

where 0. is given by Lemma 3.4.1. Let A > 0, 0 < ¢ < 4./(1 + A) and
= Ae. Let v and p such that [[v||,2 . < ac and ||,0||L2 . <e By

Lemma 3.4.1 and the fact that £ and 1/(1 + £) are bounded on L2 ;; (R)
(see Theorem 3.3.1), we have

HPQZP—V L2 ..

B(L?ln f

<G HVHL?mif +Collp—vlia < (CiA+Ca(l+ A)%)e
(3.68)
We choose A < 1/C} such that for ¢ < (1 — ACy)/(Co(1 + A)?), we have
19,z <e.

To show that G, is contracting on Bj» , (¢) for & small enough, we use the

explicit expression of @27,),,,. Let p,p' € Blemif (¢) and denote by H = Hy +
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Yi*(p—v) and H = Hy+ Y *(p'—v). The function (1+L£) (G, (p) — G.(p'))
is the density associated with the operator

1 1 S| 1 S|
— Y — - Y, . S /%
2ir c(z—Ho m* (P ”)> :—H <z—H0 m(p ”)> o

A straightforward calculation shows that this operator can be written as

LC< ! Ym*(p—u)>2;ym*(/)_p,) :

24w z — Hjy z—H z— H’
1 1 1
Y, - Y, s
+Z—H0 m*(p V)Z—HO m*(p p)Z—H/
1
Y, - Y, f— dz. (3.69
+Z—H0 m*(p p)Z—HO m*(p V)Z_H/z ( )

Using the same techniques as before, we deduce that
19,0 = Gl 2 <C(No=vlZa +lo=vlsz, + o =vll,z )
<[lp=rll2
< (lolz,,
<Cs2+A)elp—pll -

170+l ) o= ol

unif

Taking, in addition, ¢ < 1/(C5(2 + A)), we have that G, is contracting on
B2 (¢). Let p be the unique fixed point of G, in Bj2 . (€). It remains to
prove (3.67). By (3.68), we have

=16,z < Cilwlzz,, +Cot+ e (Ipllz, + iz, )
Therefore

(1= Co(1+ A)e) llpll 2~ < (Cr+ Co(1+ A)e) vl 2

Il 2

if

Using that e < (1 — AC1) / (Ca(1 + A)?), we have 1 — Co(1 + A)e > 0 and
we deduce that
Cy+Co(1+ A)e 1
lollzs,, < G g Wlia,, <5 Wi,

which concludes the proof of the proposition. O

3.5 Proofs of Theorem 3.2.3 and Proposition 3.2.5
(Decay estimates)

We present in this section the proofs of Theorem 3.2.3 and Proposition 3.2.5.

They consist in decay estimates of the mean-field potential V,, and the mean-

field density p,. These estimates are used later on in the proofs of Theo-
rems 3.2.2 and 3.2.7.
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3.5.1 Proof of Theorem 3.2.3

Proof of Theorem 3.2.3. Assume that |[v|,2 < ac, where ac is given in
Theorem 3.2.1. We use the notation p to denote the mean-field density
Pv = Pryy—~o, the solution of (3.66), and denote by V =1V, =Y, * (p — v).
Recall the decomposition (3.65) of p in a linear term and a higher order term

p=—L(p=v)+rs, -

Using localizing functions, we will show that p decays far from the support of
v. To doso, let us introduce the set I = {k € Z%, supp(v) N B(0,1) + k # 0}
and for R > 1, the set Bp = By gp = Uger (B(0, R) + k) and the the function
Xr = Xr,r defined in Lemma 3.3.4. They satisfy 0 < xg <1, xg = 1 on
Bpr, Xr = 0 outside Bog and R |Vxg(7)| + R?|Axr(z)| < C for a constant
C' > 0 independent of the set I (thus independent of v). We denote by
nr =1 — xr. We thus have

nep = —NrL(p = V) +1Rrpg, = —Lir(p —v) + [Lng] (p = v) +nreg, -
As for R > 1, nrv = 0, it follows

1 1
) [£,nr] (p—v) + A5 0) PG (3.70)

We will successively bound each term of the RHS of (3.70). For the first
term, we have by Lemma 3.3.4 for R > 2,

C( _cn
2} (0 = ez, < 5 (€™ I =l + 1m0 =],
Lﬁnif > ’

C /[ _w
< ( RNz, + Lot
where we have used that 1p, .\, V= 0 for R > 2 and that p is controlled
by v in the L2 .. norm. As that 1/(1 + £) is bounded on L? .. (R9) | we

~ R
uni unif
obtain

if

C _cng C
< Ee ||VHLﬁm + R HlBSR\BR/2p

Hﬁ [£,nR] (p = v)

Lﬁnif .
(3.71)

2
Lunif
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As to the second term of the RHS of (3.70), since 1ga\ g, g = nr, we have

~ 1 1 1 1
77RQ2,p—u =5 fénR Vv V dz

2im »—Hy z—Hy z—H
- % cz —1HonRVz —1H0Vz —1H

" [UR’ z—lHo] Vz_lﬂovz_lHdZ

i cz%Hole\Bsz_lHonsz_lHdZ

" % B z—ilf-fole\BRv [nR, . _1HJ V- _1Hdz

v % c [nR’ z —1Ho] Vs —1H0Vz — g% (3.72)

where H = Hy 4+ V and C is as in the previous section. We recall that by
the assumption ||v|| 2 L Sa the operator H has a gap around 0, thus the

operator (z — H)'(=A+1) and its inverse are uniformly bounded on C and
all the estimates obtained in the previous sections hold when we replace Hy
by H. We denote by r3, r4 and r5 the densities associated with the three
operators of the RHS of (3.72) respectively. Using an inequality similar
0 (3.23), involving H instead of Hy in the resolvent in the right, we have

1
Irallpz <C 1Rd\BRV V77R

nif

Vgl

dz < C HVle\BR

B

By (3.28) in Lemma 3.3.4, and using that ||Yy, * f]| 2 L= I1fl 2 _» we have
that for R > 2

IVl < Yo * (0o — )] 2

unif

+ 5 (eIl

RS [Ty T). (3.73)

Therefore

¢ o
Irsllzz < |tzese?]| . (C 1Y% Grodlisz, + Fe R Illze,

C _
< C||tmans, V]|, (Clinmollza,, +Fe " vl
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To bound 74 and 75, we recall that we have shown in the proof of (3.28)
(see (3.60) and (3.61)) that for any f € L2 .. (R?)

unif

_1 1
H(—A +1)72 [nr, Al z—iHoym * <1(Rd\BaR)UBzRf>

G2

1
- ' iy A 7 Yo * (Uanrun ) HB
C/( _cnr
< - <e HfHL?mif + “1B3R\BR/2f‘ Lﬁmf) .

Therefore, using again the equality [ng, (z — Ho) '] = —(2—Ho) " [nr, A] (2—
Hy)~!, and an inequality similar to (3.23), we obtain that for any R > 2,

1 1

A
— (R, ]z—Ho

Vil dz

B
) .
Lunif >

(3.74)

iz, < C  [1ms,V]) .

¢ —C'R
< G ltmsa ], (Wi, + [1500m0

The last term of the RHS of (3.72) can be written Qi + Qout, Wwhere

1 1 1 1
in — 5> 5 Y, 1 - V dz.
Q 2Z7T o |:nR - HO:| m * ( BgR\BgR (p V)) o — HO o — H z
In the same way we obtained (3.74), we get
laullzz < C @ |[lnm Al —Vi % (1 -0 ||—rv| a
Qin Lunif — p ’ ”— HO m BgR\BgR 5 ”— HO 5

5 .
Lunif >

To estimate pg,., we recall that by (3.49), we have that for any A €
G (L*(RY))

C on
< G Wl (" Wl + vt

H'O(—AH)*%A(_AH)*% 12 < C|A]g, -
Therefore

_1 1
HPQO‘“”Lﬁmf = C]é: H(_A +1)72 [nr, A z_ifjoym * <1(Rd\BBR)UB2R (p— V)) o
2

1 1
1—-A)"2|| d
x z — H()V( ) ’ B o

) .
Lunif >

¢ —C'R
< G WVl (e Wl + Lot
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Now that we have found estimates on r3, 74 and r5 = pQ,, + PQou,, We Use
that

|1z < IVlpe < Cllo— vy, < Clwllsa, < Ca

to estimate NRAG, as follow
P—V

C _o C
< Cacllunpliz,, +5e Wi, + 5 [ssesr

|nres,,

) .
Lunif

(3.75)

2
Lunif

Using once more that 1/(1 + £) is bounded on L2 .. (R?), we deduce the

following bound on the second term of the RHS of (3.70)

1 C o
[z, | < Conclmoliz,, + G vl
unif
C
+ % |[tmmisap| ) (3.76)

Gathering (3.70), (3.71) and (3.76), we obtain

C _o C
Inwelliz,, < Coellamolly,, + e " Wiz, + 3 [Lssmmesf]]

We choose o, < min {1/(2Cp), e}, where Cp is defined in (3.76), and assume
that ||v| 2 L < al. Tt follows

¢ _cor ¢
||”7Rp||Lﬁn1f S Ee ||V‘|Lanif + E HlBSR\BR/2p L121nif

We have a similar inequality for V. Indeed, by (3.73), we have

C _
Vs, < Yo * (o = D), + R llp = vz,
C
+ = HlBgR\BR/g (p—v) 2

C C
<lmrolza,, + e Pl + 5 [1Bama.0

it R if Lanif
C *C,R C
<Rl + 5 [ N (3.77)
Using Lemma 3.3.5 with zg to ||1ga\ g, ‘ , » We obtain
unif
—C'(log R)?
Inrellyz < Ce O 0B lyjl, (3.78)
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Inserting (3.78) in (3.77), we get
InaVilgs < CemC0ER y,

Finally, noticing that 1ga\ o, () < r/2, We conclude the proof of (3.13).
O

We now turn to the

3.5.2 Proof of Proposition 3.2.5

Proof of Proposition 3.2.5. Assume that HI/HL2 < where . is given in
Theorem 3.2.1. As p, and p,, are fixed points "of the functionals G, and G,
respectively, then

1
Pv — Pvp = 1 +£(V - VL) + 1 _{_Ep@(pu_y)_@(p%_ym-

For R > 1, let xgp = X{o},r and Br = By r as defined in Lemma 3.3.4.
Since 1p, < xR, then

B (ov = puc)llze < lIxR (P = Py )2
1
S ‘ 1 + L (E (V - VL) + p@(ﬂu*l’)*é{?(PvayL)>
Besides, there exists C' > 0 such that for any f € L? . (RY) and any R > 1,
1 C( _cnr
| x5z <—G I1Flzs +

L _R

unif

XR

1.2

unif

Indeed, using that 1/(1 + £) is bounded on L2 ;; (R?) and estimate (3.28)

in Lemma 3.3.4 (notice that Lxr — xrL = nrL — Lngr), we obtain
1
1+ ﬁ 1 +L

1
1+ L

f

1
H [XR’ 1+£} .

SCWLXM f

v
(em

el
<eCRuﬂumf+

2
Lunlf

1
1+ L

1
BgR\BR/Q 1 + £f

IN

2

Lumf )
2

Lumf )

+‘1

unif

1

¢
R
C
E 1BSR\BR/2 1+ ﬁf
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Using (3.79) for f =L (v —vp) + PGa(py—1)-Ta(puy —vi) Ve have
< ! L
Ixr (ov = po)lizz < T zXRE (W —v1) "
1
* 1+ £XPQ2(p0—v)=Q2(puy —v1) 2
unif
C _ C
F Rl 4 g (0~ sz,

(3.80)

We first bound the first term of the RHS of (3.80). Using (3.28) in Lemma 3.3.4
and that for R < L/4 it holds that xr(v — vr) = 0, we have for R < L/4

1
[zt w-m| | <Ot -l
C o C
< Clxalv — i)l + e O s, + 5 e = 0l
C o C
<SR+ S - vz, (351)

To estimate the second term of the RHS of (3.80), we denote by Ho, =
Ho+ Yy x(p, —v), H, = Ho+ Yy % (py, —vr) and fr = p, — py, — vV + VL.
A straightforward calculation shows that

Qalpy —v) = Qalpv, — vi) = Ra(fr) + Ra(fr) + Rs(f1),  (3.82)
where
1 1 1 1
= 5 _ 7Ym 7Ym v — d
m(f) 2im Jo 2 — Hy >kfz—Ho *(p V)Z—Hoo N
R (f)—?é 1 Yo * ( ) Yo x f d
2 = CZ_HOm Pvr, VLZ_HOm S Ooz
and
Rs(f) = ! Yo * (pu, — V1) Yo * (pu, — V1) ! Yo * f d
3 _Z—H()m Pvr, LZ—HQm Pur, LZ_Hoom Z—HL Z.

We bound the densities of the three operators of the RHS of (3.82) separately.
We detail the proof for pg,(y,); the other terms are treated in the same way.
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For R > 1, we have

1 1 1
Y, Y, -
XRz—HO m*sz—HO m* (pv V)z—HOO
1 Y, % f 1 v ( ) 1
= * * — v
Z—HOXR mn Lz—HO m * Py z — Hy
+ Ly n—L v, ( ) .
_— ¥ fi———Y, x(p, — Vv
XR’z—HO m Lz—HO m ¥ P z— Hy
1 1
= Y, Y, —
~— H, m*(XRfL)Z—HO m*(pu V)Z_Hoo
1 1 1
Y, -Y, —Y, -
+Z—H0(XR m*fL m*(XRfL))Z_HO m*(pu V)Z_Hoo
+ ! Yo« f ! Yo * ( ) !
—_ * fp———Y * (p, — v .
XR’Z—HO m LZ—HQ m p 2 — Ho,

Therefore, using (3.28) and reasoning as in the proof of (3.75), we find for
R < L/4,

Ixaor,ull e < Clixafellie,, lov =i,

XRYn o+ fr = Yok ol oo = vlsa

C _Cl
+ = (O W illgz,, + panfellz ) low = vllzz,

C _
(Ixae = )l + G

if

C
<l gy, + 5 il ).

if

Similarly, we obtain

HXRPR2(fL)HLﬁnif <C HVHL?mif
C o C
< (Ihenton =l + 5o Wi, + 5 Manadeli,, )

and

2
HXRpRS(fL)HLﬁnlf S CHVHL?J.nif
C _ C
< (Icrlon = pdlzs,, + e Wlis,, + 5 Manadeli,, ).

It follows that the second term of the RHS of (3.80) is bounded by

I

N — ,V 2
T NG @ity |, SO0 (W, + I, )

unif

C
< (It = pulig,, + 5o Wi, + G Maedili,, ).
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We choose o, < a such that Cp(a, + o,%) < 1/2. Thus, if ”VHL?".if < ol
then

1
1+ £ FPQ2(p0—1)=Qa(puy —v1)

Ixr(py — pVL)HLﬁn

if

1
L2 2

unif
LC
R

/N

el
Rl + Mpgfille )

(3.83)
In this case, combining (3.80), (3.81) and (3.83), we obtain for R < L/4

152 (o0 = Pz < I (o0 = P2

if
C( -cr
< & (O g, + M (= e, + e =), )

Using a recursion argument, we easily see that for any 8 > 1, there exists
C > 0 such that

C 7CIL C
low = punllz, o, o < T3¢ “ Wl + 75 1080 (0 = o)z,

if

C C
+ s, =)l <5 e

if
To conclude the proof of the proposition, it remains to prove the bound on
the potential. Using (3.28) and denoting by fr, = p, — pu, — v + 1, we have
Vo = Vipll g i (Byu8) < HXL/MYm * fLHH2

uni

< HYm * (XL/4,B (pu - pl/L))

unif

|1

unif

C 7C,L
5 (e Mtz + 15022, )
C ol o

e ) PR s P LN

C C [ o C
< Galvlig,, + 3 (e Whag,, + o Wlag,, )
- C
< S la,

O

3.6 Proof of Theorem 3.2.2 (Thermodynamic limit)

Proof of Theorem 3.2.2. Assume that ||v|| 2 < e, where ac is given by
Proposition 3.2.5. By Cauchy’s formula, we have

1 1 1
v — Tvp — 5> - d,
To T 2z7r/cz—H0—Vy c—Hy—V,,
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where the curve C is as in Section 3.4. We write the resolvent difference as

1 1 1 1

_ — Y. - -
:—Ho—V, =z—Ho—V, z-Hy—V, m*sz—HO—VVL’

where fr, = p, —v — p,, +vr. For a compact set B C R?, we have

1 1
gVt f—— 1
BT v, T, T,

1

T -
8 B " H,—V,

<C

1 Ym*fL

S2
For L large enough, we have B C B(0, L/8) and, by Proposition 3.2.5,

1

1
= Ho—V, 1p(0,0/0)Ym * L

< R —
Z—H()—Vy

(SP)

1p

HlB(O,L/zl)Ym * fLHLoo
So

C
< vz

unif

Besides, as d(B,R%\ Br4) > L/8, we have using Lemma 3.3.6,

1

L o —— Ho—V, lga\go.z/a)Ym * fr| < Ce F Hle\B(O,LM)Ym * fLHLOO

G2

unif

C
< vz

As C is a compact set and all the estimates are uniform on C, we conclude
that

C
e (v = we)lBlls, < 7 W2, — 0.
L

unif [,— 00

O

3.7 Proof of Theorem 3.2.7 (Expansion of the den-
sity of states)

The proof of Theorem 3.2.7 follows essentially the proof of [87, Theorem
1.1]. The main difference is the proof of Proposition 3.7.1 below, which deals
with self-consistent potentials, while [87, Proposition 2.1] deals with linear
potentials. Treating nonlinear potentials is done at the price of assuming
that the defect x is small in the Lﬁnif -norm, so that the potential decays
fast enough. For the sake of self-containment, we mention here the main
steps of the proof.

Proof of Theorem 3.2.7 . Following [87], we first express the density of states
of the random operator H,(w) in terms of the resolvent (z — H,)~! for 2 € C.
We next find an asymptotic expansion of Tr ((z — Hp)*l) using a thermo-
dynamic limit procedure.
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We recall the Helffer-Sjostrand formula [69, 38|. For a self-adjoint oper-
ator A and ¢ € S(R), we have

B (990 1

where ¢ : C — C is an appropriate complex extension of ¢ such that

(i
(ii) supp(®) C {z € C, [Im(z)| < 1},

) ¢=¢onkR,
)

(iii) ¢ € S{z € C, [Im(z)| < 1}),
)

(iv) for any n € N and o, 8 > 0, one has

o
sup Ny 5 (w<|y| <x+zy>>)scn,a,ﬁ sup Nov o (),

ly|<1 B! <n+B+2
Y !
o <a

(3.84)

L
where NV, () = sup,er ‘maan :

Hence, for ¢ € S(R),

(ny — o, ) = /R o (w)ny(dz) — /R o(@)no(dz) = Tr (p(Hy) — p(Ho))

:’¢E</g?)<jmf¢j%>ww>

Besides, denoting by V), = V,,,, we have

1 1 1 1
_ - v,
2—H, =z—Hy =z2—Hy "z-—H,

Therefore, using the Kato-Seiler-Simon inequality (3.19) and Lemma 3.3.2,
we obtain

1 1 1
Tr - < a7 fa+r H Vol
(- )| <[ e a5 | w
—A+ )| a4
Nz ca | feas
1+m>2
<o Vil
Im(2)] m
By Fubini’s theorem, we get
1 dp 1 1
- =—— [ =)L - . .
(np — no, ) = /. 82(2’)_1“ (z—Hp z—H0> dx dy (3.85)



In the following, we find the asymptotic expansion of

Tr ((z— Hy) ' = (2 — Ho) ') asp — Ofor z € {C\ R, |[Im(z)| < 1}. Touse
a thermodynamic limit procedure, we consider, for each realization w €
and each box size L € 2N + 1, the system with defects only in the box
[z, that is, we consider the defect distribution vg, (,)(z), with Kp(w) =
{k: c74NTy, qp(w) = 1}. For K C Z%, we recall the notation

vk = Y e X(-— k), Vi = Ve = Yo * (puye — Vi) and Hxg = Ho + Vi .
By the proof of Theorem 3.2.2, we have, almost surely,

1 1
— 1 .
Tr <1F <Z — Hy(w) 2z- HKL(W)> F> e

Besides, from (3.12) and (3.25), it follows

1 1
T (1 - 1
( : (Z—Hp(w) Z—HKL(W)> F)‘

1+‘Z’ 2 W) — o L’Z‘ 2
<0 (ALY 0~ Vie 0l <€ (L) e,

The dominated converge theorem thus gives

1 1
E{Tr (1 — 1 0
(v (o (= =) ) 20
and
1 1 1 1
T — = lim E(Tr (1 — 1 .
_r<Z—Hp Z—H0> Ll—rgo <r<F<Z—HKL Z—H0> F>>

(3.86)

Let L € 2N+ 1 and N = L?. As the random variable Tr (1p((z — Hg, ) ™' —
(2 — Ho)~1)1r) depends only on the N independent Bernoulli random vari-
ables (qr)rezanr, » we have

2 (v (= =) )

= Y PEL(w) =K)Tr <1F (z —1HK T2 —1Ho> 1F>

KCZ4nTy,
T Iy L M P (E . S P
Z—HK Z—HQ

Kczinry,
N 1 1
= n(1 — p)N-—n Tr (1 - 1r ).
Sro-m £ (- )
n=0 Kczdnry,

|K|=n
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Expanding the term (1 — p)N~" as powers of p and rearranging the sums,
we obtain

(v (v (- ) )

N N—n
(N —n 1 1
(M) 2o (v () )
= j:O( ) J Z z—Hyg 2z—Hp

Kczdnry,
|K|=n
N N
n(N—n 1 1
= "y (=p)" Tr (1 - 1
Yoy (35) 5w (e (- ) )
n=0  j=n Kczdnry,
|K|=n
N J
n 1 1
= Tr |1 — 1
Yoy (50) 2w (e (- mm)v)
Jj=0 n=0 Kczdnry,
|K|=n
J .
= Z ajLp’ + Ry (2 p), (3.87)

where we have denoted the j*™ order term by

a;1(2) = Z‘; <Jj__:> (-1 <1F (Z —1HK - _1HO> 1[‘>

Kczdnry,
|[K|=n

-y Y |K\KTr<1p< L 1H>1p>
Z— K Z — 1

Kczdnr, K'CK
|K|=j

and the remainder of the series by

Ryp(zp) =) p'(1-p)"" > Tr <1F (z —1HK 2 —1H0> 1F>

J
= _ajp’.
j=0

The result will now follow from the next proposition, whose proof is post-
poned until the end of the proof of the theorem.

Proposition 3.7.1 (Estimates on a; 1, and Rjr). There exists o > 0 such
that
o for j < 2, there exists C' > 0 such that for any x € L*(R?) satisfying
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supp(x) C I and ||x||;2 < ac and any z € C\ R,

S ()T <1p <Z —1I{K/ - _1H0> 1r>

KkKczd |[K'CK
1_|_ Py j+145d
<Ol (o) - @59

|K|=j
[T (z)]

o for J < 2, there emists C' > 0 such that for any x € L*(R?) satisfying
supp(x) C T and ||x|l;2 < o, € C\R, p€[0,1] and L € 2N +1

1+ |Z| ) (J42)(d+1) (389)

[Tm(2)|

We deduce from Proposition 3.7.1 that for any 7 < 2, and z € C\ R,
aj,r(z) converges as L — 00 to

- Y Y ()W <1F (Z —1HK/ - _1H0> 1F> . (3.90)

Kczd K'CK
|K|=j

Rys(zp)| < Clxll 2 0"+ (

and that for any J < 2 and p € [0,1], Ry (%, p) converges, up to extraction,
as L — oo to Rj(z,p), which satisfies

1 + |Z| ) J+2 (d+1)
Tm(z)|

Passing to the limit as L — oo for this subsequence in (3.87) and in view
of (3.86), we obtain

R(2,p)] < Cllxllye o+ (

J
1 1 A

T — => a;(2)p’ +p’ M :

Tr (z A —Ho> 2 a;(2)p) +p" T Ry(2,p)

Going back to (3.85), we thus have

(np—no, ¢ Z——/ d:cdyp]—— g:( )R ;(z,p) dx dy p”*

We now show that the terms of the expansion are of the form claimed in the
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theorem. Indeed,

S TS e (e ()

Kkczd  kezd K'CK+k
|K|=j, 06 K

_ 1 1)K 1 1
T Z Z Z KKTT<1F<Z—HK'+k_Z—H0>1F>

Kczd  keZd K'CK
|K|=j, 06 K

1 1 1
LY S S e (i (- ) 1)

Kczd  keZd K'CK
|K|=j, 0eK

_1 1K 1
~ 5 2. 2 (- Tr<z—HK/ Z—H0>'

Kczd K'CK
|K|=j, 06 K

Therefore, by the dominated convergence theorem for series, we obtain

—= 3“”<>j<z>dwdy=§ S > )V (p(Hg) — (Ho))

0z
Kczd K/'CK
|K|=j, 06K

:_% SOy (- K\K/ DE (a

Kczd K/'CK
|K|=j, 06K

= (15, )-

Moreover, using (3.84), (3.88) and (3.90), we see that p; the distribution

defined by
9¢
o (uj, ) = — Bz( z)a;(z) d dy

is a dlstrlbutlon of order at most j + 3 + jd. Finally,
= —= fC 52 (2)R (2, p) dr dy defines a distribution of order at most J +
44 (J H 2)d and satisfies

99

<>RJ<zp>dmdy1<cJ sup Il N ).

c 0z B<J+at(J+2)d
a<(J+3)(d+1)
This concludes the proof of Theorem 3.2.7. U

To complete the proof of Theorem 3.2.7, we need to prove Proposi-
tion 3.7.1. We first state and prove Lemma 3.7.2 which will be useful in
the proof of Proposition 3.7.1.

Lemma 3.7.2. Let H = —A+ W, with W € L? . (R?). Then, for any
B €N and any Borel set B C R?, there exist C > 0 and C' > 0 such that for
any z € C\R and any v,v' € LE(RY) satisfying ||v|| ;2 . AN 2 L Sae, R=
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d(supp(v),0) > 1, R’ = d(supp(+),0) > 1, D = d(supp(v),supp(v’)) > 1,
we have

1 L+ 12| ( _crogr)? |, —c
X vl < oltld < (log R) c2(z>R> . (3.91
‘ e H s, T () \ e iz, - (391)
1 C 1 -’
Viy——= Vi = V)| <o (=5 P
- (Ve JB_HMM<DﬂH Wilgz,
(Wi + 10, ) 392)
1 1+ |Z| !
‘ 1Fz —_ H (VV—H/, a Vl’) (GP) S C|Im(2)| (HV”Lanif + HV HL‘Q‘"if)
y [%+e‘C'c2(Z)D+€_CI(IOgRI)2 +e—C’ca(z)R’] (3.93)
and
1+ |z ’
‘ 11‘2 —H (Vu+u’ — V- Vyl) G : C|Im(2)| (HVHLﬁnif - HV HL‘%"“)

1 f’o~2 —C'cs(2)R
X <m (e C'(logR)” | o=C'ea )R>>, (3.94)

where R = min {R, R'}, c2(z) = d(z,0(H))/(1+|z|) and where the constants
C and C" depend on W only through its L121nif -norm.

Proof. Inequalities (3.91) - (3.94) follow from Lemmas 3.3.2 and 3.3.6, The-
orem 3.2.3 and Proposition 3.2.6. Indeed, in order to prove (3.91), we first
look at V,, far from I'. Using Lemma 3.3.6, we have

1 C o
< —C'ca2(2)R
‘ 1Fz — Hle\B(O%)V” Sy ]Im(z)]e Vel
C
< c2(2)R )
= ’Im(z)’e HVHLﬁmf

Near I', V,, decays as R gets large by Theorem 3.2.3. As d(B(0, %), supp(v)) >
R/2, then, by (3.13), we have

< Ce @M R )|,

e 0
unif

Ll (PPN

“13(0,%)‘/” H2

unif

L
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where we have used that in dimension d < 3, HZ .. (RY) — L*(RY). We

next use Lemma 3.3.2 and the Kato-Seiler-Simon inequality (3.19) to obtain

=l

which concludes the proof of (3.91). We turn to the proof of (3.92). Let
B >0 and a = 4°. By Proposition 3.2.6, we have that near v, Vg =V, is
small:

1

1
Ir——1po,m Ve N

-A+1|g

<

Jima

L+ 12[ _crog R)?
<C (log
|II’I1( )|6 HVHL?1 i

LOO

C
o < (Wi +Wlz,). G99

where, we recall Cg(v) = {z € RY, d (z,supp(v)) < R}. Therefore

chgD/a(u) (Vu+1/ - VV)

1
VulB —Z — chQD/a(,,) (V,,Jr,,/ — VV)

B

C
< HVV1BHL°° m (HV||L121n1f T HylHLﬁnif)
C

= [im(z >|D6 Wi, (e, + 101, )

Besides, by the decay of V,1, far from k proved in Theorem 3.2.3, we have

|

.

Vitglrano,,.00)|, Dﬁ e -

Therefore

1

% v v C 1
VIB]‘]Rd\CD a(l/) 1Rd\CQD a(l/) ( v+v/ V)
/ »— H /

= [Im(z)| D?

< il (uuuLgmf Ve )

Using Lemma 3.3.6 for the remaining term, we obtain

1

¢ —C'ca(2)D
VVlBlCD/a(V)mle\CbD/a(u) Vot = Vo) € 2(2)

< -
5= ()|
/
Al (W, + 902 ),

which concludes the proof of (3.92).
We now prove (3.93). Let > 0 and a = 4°. IfT' C Cpja(v), then
similarly to the proof of (3.92), we show that

: rlhy >’r <Dﬁ +eCe? > (hzz,, + 11z, )
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Otherwise, we use (3.91) to obtain

1

1
Fz—H

(VVJrl/’ - Vu)

<ot (eC'@ogﬁf + e—C'C“Z’ﬁ) Wz,
& Mm(:)]

In the latter case R > D/a and R' < (1 + a)R. Thus R > CR', which
concludes the proof of (3.93).
Finally, by (3.91), we have

1 Lt [z [ —cr(og(R))? . ~Cles(a)RR
1F— (VV v Vy — VV/) S <€ 08 +e c2(z
— gVt s, 1Im(2)]
C
x5 (Wl 0, ) 399

By Theorem 3.2.3, we have

C
Joo < DB HV HL2

unif

“1CD/¢L(V)VV/
In view of (3.95), we obtain

C
HlCD/a(V) (V’/+’/ - V- Vyl) [, < W <||V||Ll21nif + HV’HLanif> '

Similarly, we obtain,

C /
Lo = DB (HV”Lﬁnif + HV HLﬁmf) ’

Finally, using Theorem 3.2.3 to control V., — V,, — V., outside of the two
balls Cp /o (v) and Cp o ('), we conclude that

chp/a(z/) (VV-H/’ -V, - VV’)

C
Wossr = Vo = Virllpe < 55 (HVHLﬁnif + H’/HLgmf) ' (3.97)
Therefore
1 1+1z| C ,
g O =60 = i oa (¥ Wi, )

(3.98)

By (3.96) and (3.98), we find

1 1+|Z| C —C—/(l R 2 _c R
T o w(B)) 4 -G
e Ve T WS T D (% o
% (HVHLanif +HV/HL121nif)7
which concludes the proof of (3.94). O
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We now prove Proposition 3.7.1.

Proof of Proposition 3.7.1. Let a. be the minimum of the constants «, de-
fined in Theorems 3.2.1 and 3.2.3 and Propositions 3.2.5 and 3.2.6. We
assume that ||x| ;2 < a.. Throughout the proof, 8 will denote an inte-
ger greater than d + 1 whose value might change from one line to another
and C > 0 and C’ > 0 constants that depend, in general, on 3. For
z € C\ R, we denote by Ro(z) = (2 — Hg)~! and for any K C Z%, we
set Ri(z) = (z — Hg)~'. We omit the dependence on z when there is no
ambiguity. We also omit the ||x||;2 in our estimates. Let L € 2N + 1 and
denote by N = L4,
For j =1 and K = {k}, with k € Z%, we have

Tt (1r (Rgry — Ro) Ir)| = |Tr (1rRoViy Ry Ir) |
< [trRoViy |, 1Ry 11|, -

Therefore, using (3.91) in Lemma 3.7.2, we get

1 2 / /
ITr (Lr Ry Vi Bolr)| < C <|1nt(|j)||> <ef%(log\k‘|)2 +ef%02(z)\k|)_

Since the series ), 7a e Mkl with A > 0, is equivalent to fRd e Meldy =
1/X4, and for z € {z € C, |Im(2)| < 1}, it holds 1/ca(2) < (1 + |2])/ [Im(2)]
and 1 < (1 + |z])/ [Im(z)|, we deduce that the series

Y hezd ‘Tr (1FR{k}V{k}R01p)‘ is convergent and its sum satisfies

1+|Z|>2+d
Tr (1r Ry Vi Rol <C .
k§d| r ( ik} V{k}4w F)| = <|Im(z)|

For j = 2 and K = {k,k'}, with k, k' € Z% a straightforward calculation
gives

> ()T (10 (R — Ry) 1r)
K'CK
=Tr (IrRo(Viky = Vi = Vi) By Ir)
+Tr (IrRoVi Ry (Viewry — Viey) Ry 1r)
+ Tr (1FROV{k!}R{kJ} (V{k,k’} — V{k’}) R{k,k’}lf) . (3.99)

Using the inequality (3.94), the first term of the RHS of (3.99) can be esti-
mated by

leRo(V{k,k'} = Viky — V{k/})He2 |’R{k7k’}1FH62

1 + ’Z‘ )2 C —C/(l : 711)2 v : ’
- o~ C"(logmin{K W) ,~Cles() min{ kL W} |
< (o o )
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As to bound the second term of the RHS of (3.99), it is bounded by

IteRoViylle, [ Roey (Views = Vi)l 1R rlg,

1 —|— |Z| 3 701(1 2 v
- oglk)? | ,—Clea(2)lkY |
=¢ <|1m<z>|> (¢ e )

using (3.91), and by

ItrRolle, [[Viky Ry (Vikwy = Vi) s | Rgewny e,

1+’Z‘>3 1 —c’ k—k'
<C + ¢ Cle2(2)l .
(!Im(z)\ k— k|’

using (3.92). Therefore

L+ 2}
‘Tr (1pRoV{k}R{k} (V{k,k’} - V{k}) R{ng’}lF)‘ <cC <m>

< 1 ~Clea(2)k—F| :
5 te c2lz .
|k — K|

We have the same bound for the third term of the RHS of (3.99). There-
fore, the series > xcpa |> jorc o (— DK T (1p (R — Ro) 1r)
|K[=2

gent and its sum satisfies

>

Kczd
|K|=2

N

y <6_c'<log|k|>2 n 6—0'c2<z>|k|)

is conver-

> ()T (10 (R — Ro) 1r)

3+2d
SC(\zH—l) .
[Tm(2)]

We turn to the proof of the estimate on the remainder (3.89). Let J < 2
and p € [0,1]. We first write R (z,p) in the form of the expectancy of a
binomial variable. Indeed, we have

N J
Ryp(zp) =Y p"(L=p)"™" Y frx—Y ajr(z)p,
n=0 j=1

Kczdnr
|K|=n
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where f, k = Tr (Ir (Rg — Ro) 1r). Rearranging all the terms, we obtain
J .
> ajn(z)p
j=1

p(1 = p)Nin (Nn— j> Z Z (DI gy

Kkczidnr, K'CK
|K|=3

J N .
SO ATEFI L ) D DI DY LA

J=ln=j Kczdnr, K'CK
|K|=j
N inf{J,n} N
= (1 —p)Nn B _ 1)K ,
Sra-p Y (020) XX (0 Wi
n=0 Jj=1 Kczinr, K'CK
|K|=j
N / "
=D A ) L D N G5 S/
n=0 Kczdnr; K'cK K'"CK'
|K|=n  |K'[<J
It follows that
N
Ryp(zp) = p"(1=p)"™" > Dik(2),
n=0 Kczdnr
|K|=n

where

DJ,K = fL,K - Z Z (—1)K,\K”fL7KN.

K'ck K'CK'
|K!|<J
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We next notice that for K C Z4 such that j = |K| < J, Dk = 0. Indeed

Yoo > ) =y > () e

K'ck K'CK' K'CcK K'CK'
|K/|<J
J i
=22 0T Y D fwe
i=1 n=1 K/'CK K'"CK'
|K!|=i |K'|=n
J i j—mn
) Bl CAR B S
221 i f
i=1 n=1 K'"CK
|K"|=n
J .
. ]—TL
== 1 rn . K"
)P SET CAN 1D S
n=11i=n K'"CK
‘K”‘—n
J J—n ) j—n
= (. K
> D Pl > of
n=1 =0 K'"CK
‘K”|:n
J
:g 5]—71:0 E Tk
n=1 K''CK
‘K”|*n
:fK'

We thus have

N—-J-1 1
. S (N—J-1\/N-J—1
Ryi(z,p) =p'™ E p"(1—p)N 1( )( >

n=0

|K|=n+J+1

=p' M E (g1 (Yo +J +1,2)),

where Y7, is a random variable of binomial distribution of parameters p and
N—-J—-1land gsr(-,2): {J+1,--- ,N} = R is defined by

gJ,L(naZ):<]§__:]]__11>_1 Z Djk(z).

In order to prove (3.89), it is therefore sufficient to show that there exists
C > 0 such that forany L € 2N+ 1and J+1<n <N,

1+ |Z| J+2+(J+2)d
9sL(n,z)| < C( )
19, (n, 2)] Tm(2)|
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It is sufficient to prove the above inequality for J = 2. Let J+1 < n < N and
consider a configuration K C Z4NT, such that |K| = n. A straightforward
calculation shows that

N—J-1\"
grr(m2)=1{_ _, > Tr (IpRy (Pix — Pox) Rilr)
Kczdnry,
|K|=n+J+1
where
Pri=Vi =Y Viy— > (Viewy = Viwy = Viwry)
keK k,k' €K
ktk!
and
Poic =Y Vg B (Ve = Vi) + D (Vikw) By (Vie = Vi)
keK {k,k'}yCK
~ Vi By (Vi = Viy) = Visy Baey (Vie = Vigry) )
Besides

P g = Z Iryr Pk
rezd

For each r € Z%, we split 1ry,P1 g into two r-dependent quantities: a part
involving the defect in ky = arginfirck |k — r| and the rest. We denote by

Ag ko = Vi — V{ko} - Z (V{k,ko} - V{ko})
keK\{ko}

and
Bicko= >, (Viewy = Viry = Vi) -
{k,k"}CK\{ko}
Then
Pk = Z IrerAr kg — Z Iryr Bg k-
rezd rezd
We have thus split ¢ 1,(n, z) into three parts

N—J-1\"
gsL(n, z) = > Tr [10Ro ) IrgrAgk Riclr

n—J—1
Kczdnry, rezd
|K|=n

N—J—-1\"!
_ <n B J B 1) Z Ty Z 1F+7"BK,I<:0RK1F

Kczdnry, rezd
|K|=n

N—J-1\"!
+ <n g 1) E Tr (ngKRKlp) (3100)
Kczdnry,
|K|=n
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that we will bound successively. We start by the first term. Let r € Z¢ and
denote by ki = arginfc g\ fr} d (K, {7, ko}). We introduce

gO(er):‘r_k0‘7 gl(er):d(K\{k0}7{rvk0})
and
EQ(K,T) =d (K \ {k?(], k‘l} N {T‘, ki(),k?l}) .

When there is no ambiguity, we omit to note the dependence of these quan-
tities on K and r. By Theorem 3.2.3, we first have

C

(bo+1)°
(3.101)

1rsr (Ve = Vi) | oo < Irar Vel poo + |10 Vigo} | oo <

We now want to control ||[1r4, (Vi — Viko}) HLOO by 1/(£141)°. If 4y < £, /47
(see Figure 3.4), then by Proposition 3.2.6, we have
C

i (3.102)

e+ (Ve = Vigy) || e <

If 4o > £1/47, then (3.101) gives

Figure 3.4: A configuration of r, ky and ky where £y < 61/45 used in the
proof of Lemma 3.7.2.

C - C
(bo+1)7 ~ (L +1)7
Therefore, by (3.101), (3.102) and (3.103),

e (Vie = Vi)l e < (3.103)

1 1
et (Vie = Vo)) | oo = [1rr (Vie = Vi) |20 % | irr (Ve = Vikgy) || 2

< ¢ (3.104)

= 5 ]
(bop+1)2 (b1 +1)2
We proceed similarly for the remaining term of Ak . First, as (3.104) holds
for any 5 > 0 and any K > ko, then we have for any k € K \ {ko}

C
e (Vikoky = Vikod) [ oo < (6 + 1)B(ly + 1P

(3.105)
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Next, if £y < |k — ko| /4°, then by Proposition 3.2.6, we have
C

e (Vikowy = Viko) [l 1 < T
Otherwise, by (3.105)

C C
1rsr (Vikoky = Vikod) | oo < (o +1)P = (|k — kol +1)8°

Therefore, reasoning as in (3.104), we have for § large enough

1 2
> e Vo = Vo) = 2 (Itrr (Vikowy = Ve 1)

keK\{ko} oo ker\{ko}
C 1
< 5 5 B
(L +1)2(lo+1)2 e (roy ko — k|2
< ¢ . (3.106)

(b1 +1)2(l +1)2
As (3.106) and (3.104) holds for any 8 > 0, then by the definition of Ag k,,
we obtain

C
fq + 1)6(50 + 1)5'

To control Ag j, by 1/ 65 , we rearrange the terms of Ag 1, as follows

Akko =V = Viory — O Vikko} — Viko}) -
K\{ko,k1}

g A ko | < ( (3.107)

By Proposition 3.2.6, we thus have
C C C
rerdArpl < 5+ Y ———p< (3.108)
2 keK\{koki} [k = Kol by
As (3.107) and (3.108) hold for any 3, then reasoning as in the proof of (3.104)
we have
Tr (IrRolrirAg ko R 1r]) < [1rRolrsrlls, Irer Ak kol [ Ri1rlls,
e—C’cg(Z)|7’| 1 1 _|_ |Z|
Im(2)|  (¢y +1)8(¢, + 1)85 Im(2)]

Therefore ), .74 Tr (|[1IrRolrgr Ag ko Ric1r]) is a convergent series. By Fu-
bini’s Theorem, we thus have

Z Tr <1FRO( Z 1F+rAK,k0>RK1F)

Kczdnry, rezd
|K|=n

= Z Z Ty (1FR01F+7’AK,I<:ORK1F) .

reZd Kczdnry,
|K|=n
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To perform the sum over the configurations K € {K C Z*NTy, |K|=n},
we classify these configurations depending on the value of ¢;(r,K), i €

{0,1,2}:

Z Tr (1FRO( Z 1F+rAK,k0)RK1F)

Kczdnry, rezd
|K|=n

<X %L S e Catn (1T i !
= ¢ m(z)|) T2 (Li+1)%

rezd Lo,L1,L2=0 Kczdnr, |K|=n
L;<t;(K,r)<L;+1

VdL )
<3 Y el < L+ | > Nir(Lo, L1, Ly)
- reZd Lo,L1,L2=0 |III1(Z)| H?:o(Lz + 1)5

where Ny, , (Lo, L1, L) is the number of configurations K C Z¢N Ty, such
that |K| = n and L; < ¢;(K,r) < L; +1 for i € {0,1,2}. This number
can be estimated by the asymptotic value C (]r\[ __g’) H?:o L‘ii_1 when N — oc.
Therefore, taking 8 large enough, we obtain that the first term of the RHS
of (3.100) is bounded by

L
SOY cedatn <1+|Z|>2 ! <c<1+|z|>2+d
Im(z)] ) T_o(L; +1)F = = \[Im(z)] '

rez4 Lo,L1,La=1

We turn now to the second term of the RHS of (3.100). Let r € Z¢. With
the same techniques used to bound 1py,Ag i,, we now bound 1ri,Bg k-
Indeed, for any k, k' # kg, we have by Theorem 3.2.3 and the same techniques
used in the proof of Lemma 3.7.2

C
(d (r, {k, k'}) + 1)8 [k — K|
C
< .
= (bo(K,r) + 1) (r, {k, k') |k — &/|°

1 (Vikary = Viry = Vi) || e <

It follows that

1+ 2] \?
Tr (llr‘}zolp_i_rBK’]g RKlr‘) S C <7>
’ [Tm(2)]

e—Clea(2)lr]

X
{k,k’}cZK\{kO} (o(K,7) +1)8d (1, {k, k’})ﬁ |k — k:’|5
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and

> Tr|IrRo | > IreBr | Riclr

Kczdnry, rezd
|K|=n

(mo) T %

€zt KCTL {kA}CK\ ko)

e—Clea(2)r|

(bo(K,7) + 1)8d (r, {k, k') |k — k'|°

yy oy w

reZd Lo=0 {kk'}czd KESy n(Lo.k.k')
[k—r|<|k —r|

co(i

e—C'ea(z)Ir]
(Lo + 1)8(|r — k| +1)8 [k — k'|°
—C'ca(2)|r] /
S <1+|Z|> Z Z Z e NL,n,T‘(LO7k7k) 5
()l ) S =) Gyt Lo+ DA (r =k +1)% [k — k|
[k—r|<|k —r|

(3.109)

where N, (Lo, k, k") is the number of configurations in

Spnr(Lo, ke, k') = {K CZiNTy, |K|=n, Lo < lo(K,r) < Lo+ 1,
kK € K\ {ko(K,r)} }

Ninr(Lo, k, k') can be estimated by C(]X::?) LA~1. Taking § large enough,
we thus obtain that the second term of the RHS of (3.100) is bounded by

(=)

We are now left with estimating the last term of (3.100). A straightforward

2+d
Z Tr <1FRO( Z 1F+rBK,k0)RK1F) <C <%> .

Kczdnry, rezd
|K|=n

(3.110)
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calculation shows that

P = Z Viky Riry (VK —Viy — Z (Vg — V{k}))

keK K ER\{k)
+ > (Vi = Viwy = Viwy) By (Vi = Viery)
{k,k’}CK
+ > Vin Ry Viewy = Viey) Ry (Vie = Vierry) - (3.111)
k,k'e K
k£k!

Using the same techniques as before, we show that

N-3\ /1 drad
> ITr (IrRo Pk Rlr)| < C Lzl , (3.112)
- ' n—3 |Tm(2)|

cry,

|K|=n

which concludes the proof of (3.89). Indeed, for example for the first term
of the RHS of (3.111), we have for any k € K

Tr (1FR0V{k}R{k} (VK —Vigy — Z (Vigry — V{k})) RKlp)

k' e K\{k}

< | trRoViy |l 6, 1Ryl 5 (VK ~Viy— >, (Viewy — V{k})) Ryclr

ke K\{k} S,

(3.113)
Using (3.91), we have

HlFRoV{k}H62 < C% (e*C/(log\k\)Q + e*C/CQ(z)Uc\)

and

1
[ Ry || 5 < ()]

For the last term of (3.113), we have by (3.93)

<C 1+ 2]
[Tm(z)]
(SP)

(VK V= 2 (Viewn - V{k})) Riclr

k'e K\{k}

1+ Y L Ttk L ]
|k‘ _ k/|5 |k/|5
k'e K\{k}

=C <|11n+1<|zz>|| ) -
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It follows that

Tr <1FROV{k}R{k} (VK “Vip— > (Vi - V{k})) RKlr)

k'eK\{k}

1 + |Z| 3+d 70/(1 9 -
- oglk|) C'ea(2) [kl 114
=€ <|1m<z>|> (¢ e ) .

Besides, by (3.92), we have

Tr (1FROV{k}R{k} (VK V= 2 (Vi - V{k})) RKlr)

k' e K\{k}

< 1rRolls, |V By | Ve = Vir = D (Ve = Viw) ||| 1Bk Irls,
K eR\{k} 5
1+ |2 )3 1 —Ces ()0 (KN kL)
S C + e c2(z)€o0 )
(IIm(Z)I bo(K \ {k}, k)P
T : B —|—e_0/62(z)k_k/|>
K eK\{k} |k — K|
1+ 2] >3+d ( 1 —Clea ()00 (K\{k} k))
<cC + e~ Clea@)o k)Y 3.115
(o) (Gaemre (3.115)

Finally, we introduce kg = ko(K \ {k}, k) and write

Vie=Vig— Y. (Viewy = Vi) = Ve = Viewoy — . Viewy = Viwy) -
ke K\ {k} K€K\ {k,ko}

Using (3.92), we obtain

Tr (1FROV{k}R{k} (VK V= 2 (Vi - V{k})) RKlr)

ke K\{k}

< 1rRollg,

Vi Ry (Ve =V = - Vi = Viw) ||| [Bxlrlls,
k'e K\{k,ko}

<C ( 1+ |2] )3 1 1 o= Clea(2)ea (K\{k} k)
o \Mm(2)| ) \ (K \{k}, k)P

1 —Ces(2) k=K
+ Z |k‘ _ k/|5 e ’

k'e K\{k,ko}

1+ |2\ 1 ~Cles(2)e1 (K\{k}.)
) . 11
—C<|1m<z>|> GEN{RRP T e
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Therefore, reasoning as in the proof of (3.106), we find
Tr | 1eBoVi Ry | Vi = Vi = Y (Viewy = Viw) | Biclre
ke K\{k}

3+d
<o (o) PR \ 1) )AL (k) ),

where f(R) = 1/RP + e~ ¢'2()R ig the function appearing in the RHS
of (3.114), (3.115) and (3.116). Proceeding in the same way than in the
proof of (3.109) and (3.110), we obtain

N=3 - 14z 3+4d
(n — 3> Z Tr (IrRo P21,k Riclr)| < < | ’> ’

Kczdnry,
|K|=n

where we have denoted the first term of the RHS of (3.111) by P2 x We
proceed similarly for the other terms of the RHS of (3.111) to obtain (3.112).

This concludes the proof of the proposition.
O

3.A Decay estimates in the whole space

In this section, we give a decay estimates in the whole space of the solution
of the rHF equation for crystals with local defects, far from the support of
the defect. In particular, we show that p, € L'(R?). This decay is due to
the short-range character of the Yukawa interaction, as in the Coulomb case,
it has been proved in [33] that for anisotropic materials, p, ¢ L'(R?).

Theorem 3.A.1. There exist o, ., C' > 0 and C > 0 such that for any
v € LE(RY) satisfying ||v| ;2 . Sacand ]| =1 < o, we have for R > 2
—C'(1 2
Vol gz manerny + 100l 2@acney < Ce™ S 0] pagay . (3.117)

We recall that by [24, Prop. 1, Cor. 2|, that in this case the density p,
satisfies

1
o = prollz < O (=2 + D2 (i =20, < € (Il + 1)
(3.118)

Proof of (3.117). We use the notation p to denote the mean-field density
Pv = Pryy—no, the solution of (3.66), and denote by V =1V, =Y, « (p — v).
Recall the decomposition (3.65) of p in a linear term and a higher order term

p=—L(p—v)+ PGy, (3.119)
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Using localizing functions, we will show that each of the terms of the RHS
of (3.119) decays far from the support of v. To do so, let us introduce
the set I = {k: € 74, supp(v) N B(0,1) + k # (Z)} and for R > 1, the set
Br = Br,r = Uger (B(0, R) + k) and the the function xr = x1 r defined in
Lemma 3.3.4. They satisfy 0 < yg <1, xg = 1 on Bg, xg = 0 outside Bsp
and R |Vxg(x)|+ R?|Axg(z)| < C for a constant C' > 0 independent of the
set I (thus independent of ). We denote by ng =1 — xg. We thus have

nrp = —NrL(P = V) +1RPg,
= —Lnr(p —v) +[L.nr] (p— V) +0reg, -

As for R > 1, nrr = 0, it follows

1 1
_ _ —  _nRox . 12
an (1 _|_ ;C) [‘C?UR] (p V) + (1 + E) anQ27p7D (3 O)

We will bound successively each term of the RHS of (3.120). For the first
term, we have by Lemma 3.3.4 for R > 2,
)

C /o
NEma] (= )lze < 5 (7Rl = vlie + |[Lnyarays (0= )
C( -cr
< = (U Wle + | tgsar] )

where we have used that 1p,.\p, RV = 0 for R > 2, that p is controlled

by v in the L? norm (see (3.118)) and that [|v| g1 < C||lv|;2 < Ca. As
1/(1 + £) is bounded on L?(R%), we obtain
L2) ’

(3.121)

[£,nr] (p — V)

Cr _cnr
< R (6 vz + HlBaR\BR/z’O

[ .

As to the second term of the RHS of (3.120), since 1ga\ ,nr = 1R, We have

~ 1 1 1 1
= — \%4 V d
a2, 24w j{;nRz —Hy z—Hy 22— H N
1 1 1 1
= — |4 |4
20w cz—HonR z—Hy z—H
1 1 1

d
+ [nR’z—HJ VZ—HOVZ—H :
1 1

1 1

S S T Ve v d
% Jo 2 — Hy B\Br' R T g

1 1

— ¢ ——1 |4
2ir Jo 2 — Hy X\Pr [nR’z—

1 1 1 1
— |4 %4 d 3.122
T o C[UR’Z—HJ - Hy 2—H ( )
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where H = Hy 4+ V and C is as in the previous section. We recall that by
the assumption HVHLﬁmf < g, the operator H has a gap around 0, thus the
operator (z — H)"!(—A + 1) and its inverse are uniformly bounded on C
and all the estimates obtained in the previous sections hold when we replace
Hy by H. We denote by r3, r4 and r5 the densities associated with the
three operators of the RHS of (3.122) respectively. With the same duality
argument as we have used before, we have

Irall e < C |1,V |

Vsl
By (3.27) in Lemma 3.3.4, we have that
MRV | g2 < 1Yo * (18 (p = v)) | 2
C _on C
+ 5 =l + 5 Lm0 - ), (3128)
Therefore, for R > 2, npr = 0 and

C _
Irsllze < 1z V] , (C 1+ Grodlle + Ze O R vl

R
)

C _q C
L2 <Cl Inrpll 2 + e “R v]lz2 + R HlBSR\BR/2p

C
+ R ‘ 1BSR\BR/2P

<freent

R L2>'

To bound ry4 and rs, we recall that we have shown in (3.49), (3.51) and (3.57)
in the proof of Lemma 3.3.4 that for any A € Go(L?(RY)) and any f € L?(R%)

ooy baasn . < O N4,

L
and

1
[UR7 A]
Z fe—

N[

(A+1)" £l e

Hoym*f(—AH)—%

C

S_
(GD) R
+

] T S

Therefore, using again the equality
(R, (z — Ho) '] = —(2 — Ho) "' [nr, A] (= — Hy) ™!, we obtain that for any
R > 2,

_1 1
[rallp2 < Cyi H(—A+ 1) 2 1gay g,V (~A + 1) 2

So

1
< A+ D7 fr Al V(A + )7E| d
z — Hj (CP
C _o C
< Hle\BRV‘ Lo <E€ R HVHL2 + R HlBSR\BR/2p L2>
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and, similarly,

C _q C
Irslie < CVlss (e vllis + 5 [ Laurt 0

R

-)

[tmanse V]|, < IVIle < Cllo =il < Colvllgror (L + ] -0)

Using that

< Coa(l+a),
we obtain,
o] <O [t V]| | Inmele + Ze O
MROGy, || = C1 || IRABR V||, 1MRPlIL2 T 1 2

C
+ R HlBsR\BR/2p 2’
Using once more that 1/(1 + £) is bounded on L?(R%), we deduce the fol-
lowing bound on the second term of the RHS of (3.120)
I

C _C/R
T 2170, o L2 Inrell 2 + R ][ 2

< 01 [t

C
+ 7 [Lani 0 (3.124)

L2’

Gathering (3.120), (3.121) and (3.124), we obtain

C o C
Il + e R [l e + = ||y B0

Inrelzz < Ct |1z s, V| L

Let a be small enough so that C1Cpoa(1 4+ ) < 1/2. Thus
4 Hle\BRVHLQ < 1/2 for any R > 2 and

C *C/R C
Inrole < e R Wl + 5 [t 0] -

We have a similar inequality for V. Indeed, by (3.123), we have

C _o
8V ll2 < 1Ym * (g (p = )z + 5™ T llo = vl

C
i ROl

C *C/R C
<l (p =)l + 5 Il + 5 Loy
C _o C
< g€ Rl + = HlBgR\BR/QP

L2

(3.125)

2’
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and Hle\BRVHH2, we obtain

Using Lemma 3.3.5 with g to ‘LQ

Iga\pgp
el 2

Inrpll e < Cem @ CED ly| o gay (3.126)

Inserting (3.126) into (3.125), we get

v 2
InrV | g2 < Ce™ @8R ||l 12 ga)

Finally, noticing that 1ga\ ¢, ) < 7r/2, We conclude the proof of (3.117). [

205



206



Chapter 4

Numerical simulation of
stochastic crystals

We present in this chapter the numerical results obtained from the simulation
of one-dimensional stochastic systems.

Contents
4.1 Introduction . ... ... .............. 207
4.2 Solving the supercell model . . ... ....... 212
4.3 Optimal Damping Algorithm . . ... ... ... 214
4.4 Numericalresults . ... ... ... ........ 216
4.4.1 Settings . . . . . . ..o 216
4.4.2 Thespectrum . . . . .. ... ... 219
4.4.3 Thermodynamic limit . . . . ... ... ... ... 221
4.4.4 Localization properties . . . . . . .. ... ... .. 227
4.4.5 Low concentration of random defects . . . . . . . . 229

4.1 Introduction

The numerical simulation of materials is a useful tool in the understanding
of their properties.

In this study, we are interested in computing the electronic ground state
and ground state properties in the Born-Oppenheimer approximation [16]
of disordered materials. We concentrate on the random linear model and
the random reduced Hartree-Fock (rHF) model presented in Sections 1.5.1
and 1.5.2.

In linear empirical models and mean-field models, a system with N
electrons is described by the one-body Hamiltonian

H=— A4V,
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In the linear setting, the effective potential V is prescribed by the model,
while it is obtained by solving a self-consistent equation in the mean-field
theory. In the rHF model with Yukawa interaction Y,,, the mean-field po-
tential V' depends on the ground state density matrix v of the system as
follows

V=Y *(py — 1), (4.1)

where formally p. () = v(x, ), p1 is the nuclear density and Y5, is the inverse
Fourier transform of K ~ 4m(1 + |K|?)~'. Under suitable assumptions on
V and p, the operator H is self-adjoint and bounded below on L?(R%) with
domain H?(R?), d € {1,2,3} being the space dimension. In both cases, the
ground state density matrix of the system is given by

Ne
v = Z lei) (il » (4.2)
=1

where (p;)1<i<n, are the eigenfunctions corresponding to the smallest N,
eigenvalues A\; < --- < Ay, counting multiplicities, of the operator H. Here
we have assumed that Ay, < Ay.+1. In the linear model, approximating
the ground state of the system boils down to computing the eigenmodes of
the Hamiltonian H. For the rHF model, one needs, in addition, to solve the
self-consistent equation (4.1)-(4.2).

To approximate the eigenmodes of H, a Galerkin method is often used.
It comsists in finding the eigenmodes of Hp, the restriction of H to an IN-
dimensional subspace Xy of H'(R?). The choice of the subspace Xy is
crucial for the quality of the results. The most commonly used bases in
quantum chemistry consist of Atomic Orbitals [32].

The "natural" algorithm to solve (4.1)-(4.2) is to use a fixed point pro-
cedure, that is, to start with an initial state 7°, to calculate V° using (4.1)
and to calculate recursively v* and V* as follows

1
Y =1 <—§A + vkl < A?V;) (4.3)

and
Vk = Yo, * (p'yk - lu’)’

where )‘?Vzl is the N eigenvalue of —2A + V=1 In practice, (4.3) is
solved using a Galerkin method, as for the linear model. This algorithm,
called the Roothaan algorithm [136], gives good results in certain situations
such as closed shells atoms, but, in many other situations, this algorithm
does not converge. We refer to the recent work [100] on the convergence of
the Roothaan algorithm.
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An alternative approach, called Relazed Constrained Algorithms, consists
in finding v as a minimizer of

inf {7 (1), y€Kn.}, Kn.={7"=70<v<1, Tr (7) = N}
(4.4)

rather than a minimizer of
inf {1 (y), yePn.}, Pv.={7" =77 =7 Tr(7) =N}, (45)

where we recall that ELHF (7) is the rHF energy functional defined by

& () = %Tr (—Av)
- % /Rded (py(@) = (@) Yo (@ — y) (04 (y) — u(y)) dx dy.

Problems (4.4) and (4.5) are known to have the same minimizer ~ given
by (4.2) under the gap condition Ay, < An,+1. The simplest of such algo-
rithms is the Optimal Damping Algorithm (ODA) introduced in [30]. Each
iteration of ODA consists of two steps: find a descent direction (this step
turns out to be exactly equivalent to a Roothaan iteration) which gives a
projector 7t € Py, and do a line search to find v**1, the minimizer of
E;HF(W) on the segment [y*,7**1]. The cost of one iteration of ODA is
the same as that of one iteration of the Roothaan algorithm since the opti-
mization step can be done analytically at a negligible cost (see Section 4.3).
The ODA has been proved to converge to a local minimum when used for
the Hartree-Fock model and has showed in practice very nice convergence
properties [31].
For perfect crystals, the Hamiltonian of the system is of the form

1
Hper = _§A + Vper

where V,e; is an R-periodic function, with R the underlying periodic lattice.
In the following we take R = Z¢ for simplicity and denote by T' = [0,1)? the
unit cell. As in the molecular case, the potential Vi, is prescribed in the
linear model and obtained by a self-consistent equation in the rHF model.
The self-consistent equation can be solved using the ODA for example. To
compute the eigenmodes of Hper, Bloch theory [133] is often used. It consists
in decomposing Hpe, as the direct sum

D
Hper — / Hq dq,
F*

where I'* = [0, 27r)d is the reciprocal unit cell, called the Brillouin zone, and
Hy=-3(V+ iq)* + Vier is a bounded below self-adjoint operator on L?(T)
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with periodic boundary conditions, which has a compact resolvent. The
spectrum of H, is thus purely discrete and can be easily computed using a
planewave (Fourier) discretization of L?(T).

For crystals with local defects, the Hamiltonian of the system is of the
form

1
H= —§A + Voer + W, (4.6)

where Ve is a Z%-periodic function corresponding to the mean-field potential
of the host crystal and W is a perturbation going to zero at infinity. Under
reasonable integrability assumptions on Vjer and W, W is Hpe-compact,
so that H has the same essential spectrum as Hpe,. But H may have dis-
crete eigenvalues below the essential spectrum or in the spectral gaps (see
Figure 4.1).

Unoccupied
energies

Occupied
energies

Figure 4.1: The spectrum of the mean field operator H in presence of a local
defect.

The eigenvalues of H that are below the essential spectrum can be easily
obtained by standard variational methods in view of Rayleigh-Ritz theorem.
On the other hand, the computation of the eigenvalues that are in spectral
gaps is more delicate. Indeed, a Galerkin approximation for instance can lead
to the phenomenon of spectral pollution [99, 19, 104], that is, some sequence
(An) of eigenvalues of (Hy) may converge to a real number that does not
belong to the spectrum of H.

The state-of-the-art method to compute the spectrum of operators of
the form (4.6) is the supercell method. It consists in considering a large box
I'z, containing the defect, with periodic boundary conditions. In a recent
article [27], Cancés, Ehrlacher and Maday prove that using the supercell
method with a planewave discretization gives no spectral pollution. This
follows previous results in [104, 18|. The drawbacks of this method is that it
cannot model a charged defect with Coulomb interaction (one always needs
to add a jellium background to compensate charged defects) and induces
spurious interactions between the defect and its periodic images. Several
numerical methods have been proposed in the physics literature to improve
the performance rate of the supercell method when used with charged defects.
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We mention the work of Freysoldt, Neugebauer and van de Walle [51, 52| for
recent developments.

To solve the rHF model with local defects, one may use the ODA together
with the supercell model. An alternative approach has been proposed in |25],
based on the rHF theory for local defects introduced in [24]|. This approach
consists in treating the defect as a quasi-particle embedded in the host crystal
and to discretize the difference v — 7 using localized Wannier functions of
the perfect crystal.

In this thesis, we have simulated one-dimensional stochastic systems
within the random linear model and the random rHF model with the Yukawa
interaction. We have used the methods mentioned above, namely, the super-
cell method with planewave discretization, ODA, and Monte-Carlo method.
The purpose of these simulations is, on the one hand, to illustrate some of the
theoretical results discussed in Sections 1.5.1-1.5.3 and, on the other hand,
to try to understand some points that have been left open in the theoretical
investigation.

We simulate random alloys resulting from the combination of two perfect
crystals. Specifically, we suppose that at each site k € Z, there is a probabil-
ity p to see the first kind of crystal and a probability 1 — p to see the second
type of crystal, independently of what is happening in the other sites (see
Figure 4.2). The Hamiltonian of the system is of the form

Figure 4.2: Example of an alloy in 1 dimension.

1 &
H(w) = _§w + V(w,:c),
where the potential V' is a stationary function (see Chapter 2).

For each realization w in the probability space €2, we simulate the system
using the supercell model, which consists in restricting H(w) to the box
I'r, =[0,L), where L € N\ {0}, and imposing periodic boundary conditions.
The corresponding Hamiltonian is then

Hy = + Vi,

2da?
where V7, is the LZ-periodic potential which is equal to V(w,-) on I'z. For

a number of electrons N, per unit volume, the ground state of the system is
given by

NeL
Yo=Y |urn)(uLnl, (4.7)
n=1
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where (u L.n)1<n<N.L is an orthonormal family of eigenvectors corresponding
to the smallest eigenvalues A1 < --- < Ap n.r of Hr. To compute the
eigenmodes of Hy, we discretize the space H(I'1) using a planewave basis,
which is well adapted to the periodic setting. We explain this discretization
in Section 4.2 below. In the rHF framework with Yukawa interaction, the
potential V7, is given by

Vi = Yo * (pyy, = ir). (48)

where pr is the LZ-periodic function which is equal to the nuclear distribu-
tion p(w,-) on I'y and Y, (z) = e ™% /m. We use the ODA to solve the
self-consistent equation (4.7)-(4.8). This is explained in Section 4.3.

Once we obtain the eigenmodes of the Hamiltonian, we can calculate
quantities of interest to our study. We are first interested in the convergence
of the energy per unit volume and the integrated density of states in the
thermodynamic limit, that is, when L — oo. For the linear model, these
convergences have been proved in [89, Th. 5.1]. For the rHF model, the
convergence of the energy per unit volume has been proved in [29, Th. 5.2]
[Th. 2.5.2 Chapter 2|. See Section 4.4.3 for the numerical results.

We next study the localization properties of the Hamiltonian. As the
spectrum of Hj is always discrete, we characterize it by observing "how
much" the corresponding eigenfunctions are localized. We use a variance-
based criterion that will be explained in Section 4.4.4. As predicted by the
theory, we observe that, in the linear model, there is localization at all ener-
gies when there is disorder (p € (0,1)) and absence of localization in perfect
crystals (p € {0,1}). In the rHF model, we are not aware of any theo-
retical results on the localization properties of the mean-field Hamiltonian.
Our results (see Section 4.4.4) do not allow us to conclude whether there is
localization or not.

Finally, in Section 4.4.5, we simulate crystals with a low concentration
of random defects and study the behavior of the integrated density of states
as a function of the Bernoulli parameter p, in the limit p — 0.

4.2 Solving the supercell model

In this section, we explain how we compute the eigenmodes of the Hamilto-
nian Hy, = —%% + V1, for a given LZ-periodic potential V7. We suppose
that V7, is given by its Fourier coefficients ¢k (V) for K € 227,

For N € N\ {0}, we introduce the discretization space

Xy =span{f;, 0<j < NL}

where



The restriction Hy, n of Hy, to Xy is given, for any 0 < j,k < NL, by the
matrix

1
(Hr,n)jp = i Hife) 2@y = §<f]/',fié>L2(rL) + (f5; VLfr) L2 (ry)-

An easy calculation shows that

1 1 472 NL
§<f]/',f/c>L2(rL) =577 < 5 > (fis fed ey
o2 NL\?
=72 <’“‘7> Di—t-
Besides,
1 L —2im(j—
Vi = 7 || V)= = —ck (1),

We denote by Ay < -+ < Ay nr+41 the eigenvalues of the (NL + 1) x
(NL+ 1) matrix Hy, y and by (unn(-))1<n<nr+1 the corresponding eigen-
vectors.

The eigenvalues of Hy, y are known to converge, as N — 00, to those of
Hp, and the eigenvectors of Hj are the limits of

NL+1

onn(@) = 3 unn() (@)

J=1

Therefore, the kernel of ~;, is approximated by

YN (2, Y) Zan JoNn(Y)

NeL [ NL+1 NL+1
n=1 j=1 k=1
NEL NL+1
= — Z Z uNn uNn k) QiF(j_%)fe_Qur(k %)%
n=1 j,k=1
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and the density associated with v, is approximated by

2
NeL |NL+1

vaN(.%') = Z Z uN,n(j)fj(x)

n=1| j=1

NeL NL+1 .
§ : § : 2@7r S=)E
L uNn ( 2 )L
n=1| j=1
NeLNL—i—l
2 €T
:—§ >~ unn(f)unn(§)e* L
n=1 j,j/'=1
NL

=i Y chrlpe™E

K=—-NL

where

NeL NL+1

N i Z > b jerctunn () unn (7). (4.9)

n 1j5,5'=1
The coefficients c%’ x(p) will be used as an approximation of the Fourier
coefficients of the electronic density p.
4.3 Optimal Damping Algorithm

We explain in this section how to use the ODA to find an approximation of
the ground state of the rHF supercell model. Given an LZ-periodic nuclear
density p, we recall that the rHF supercell energy functional is

1 1
ENE (1) = STrL (=AY + 5 Diilpy = 1,y = 1),

where Try, is the trace in L?(I'z) with periodic boundary conditions, Ay is
the LZ-periodic Laplacian on I'y,, and D,, 1, is defined for any LZ-periodic
functions f and g by

L ()L
Dor(fog) =0y 3 KK

2 2

Ke2r7 m? + |K]|
Here, a, is a multiplication parameter chosen so that the kinetic and poten-
tial energy terms are of the same order of magnitude. We want to find a

minimizer of ELHLF on

ICLNe_{VGS per( ))7 0S7S17 TI‘L(’Y):NGL},
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where S(H) is the set of self-adjoint operators on the Hilbert space H.

The ODA is an iterative algorithm, each iteration consisting of two steps.
Given the approximation v* € K L,N. at the iteration £, the iteration k + 1
is composed of

~k+1

(i) the calculation of a descent direction: find 4"+, a minimizer of

d - -
{d ErHF <(1 -t~ + tw) |t:0’ v e PLJVE} ,
where

,PLJVe = {’7 € S(LIQJer(FL))a 72 =7, Trr (’Y) - NeL} .
Note that K, n, is the convex hull of P, n,;

(ii) a line search: find ¥¥*! € Ky x_, the minimizer of 5;HLF(7) on the

segment [v*, 1]

To perform the first step, we calculate, for k € N,

d 1
i (=09 +) = g (-8 (7-4Y))
réur (L= +17) = 5Ty -
+ Din,r (07 = poys (1= 1) pys +tp5 — 1) -
It follows that

51 (1-090) =4 ()

+ Din,1, (p5 = Py Py — 1)

- (1 (1))

where H, = —%A + Y, x (py — p) is the mean-field Hamiltonian correspond-
ing to the density matrix . Therefore

~k+1 Z ’u

where (Ulfl)lgngNeL are the eigenvectors corresponding to )\]f - < )\]fV I
the smallest N.L eigenvalues of H. . To compute the eigenmodes of H.x,
we use the planewave discretization presented in Section 4.2.

To find 4**1, we introduce the function

7H0) = &5 (1= )7k + 551
1 _ 1
= §TTL <_Ar7k> + tETrL <_A <7k+1 - ’Yk)) + §Dm,L (Pfyk = My Pyk — :U’)
1 . _
Dyt (551 = pors o — 1) + t5 D, (35 = 9y 31 = )
= &N + vt + a2,
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1
a® = §Dm,L (p§k+1 = Pk Pyk+1 — pvk)

1 -
bk = §TI‘L (—A (’)/k+1 — ")/k)) + Dm,L (p§k+1 - pfyk7p'yk - M)

—Tr, <H’yk (§k+1 _ ,yk>)
NeL 1

= Z )\Z — <§TI“L <—A’}/k) + Dm7L(p,yk — ,u,,Oﬂ{k)) .
n=1

Minimizing f*, we obtain that

inf f*(t) = f*(to)

0<t<1
where .
: b
0 " if T 2aF Sbko

Note that tg = 0 can only occur at convergence. We then take
,yk-i-l _ (1 - tO) ,ch + toik—’—l

4.4 Numerical results

In this section, we present the model used in our numerical simulation and
give some numerical results.

4.4.1 Settings

We simulate random alloys resulting from the combination of two perfect
crystals. For the linear model, we choose the mean-field potential of the
form

=Y a@Vilz — k) + (1 = qe(w)Va(e — k), (4.10)
keZ

and for the rHF model, we choose the nuclear density of the form
=Y (@) (x = k) + (1 = gp(w))pa(z — k),
keZ

where (gi) are ii.d. Bernoulli random variables of parameter p, and V;
(respectively p;) is the single site potential (respectively nuclear density)
corresponding to the crystal . We suppose that V; and p; are supported in
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the unit cell I' = [0,1). In our simulations, we take them to be defined on T’
by
Vi(x) = sin (4rz) — sin (2rz), Va(z) = 5sin(27x),
1

2
_ (z—3) _
pi(z) = VR exp <_O,T) and pa(x) =1 — cos(2mz)

(see Figures 4.3 and 4.5). A typical V(w,z) and p(w,x) are represented in
Figures 4.4 and 4.6.

6 6
a 4 .
e 2
A n °
1 e .
4 4
6 6 -
. . . . . . . .
0 0.2 0.4 06 08 1 0 02 0.4 06 08 1

Figure 4.3: The potentials V; and V5 used in the simulation.

N
TFIF oy

,}
!

Figure 4.4: A realization of the potential V.

For a supercell size L € N\ {0}, the Fourier coefficients of Vj (w,x) are
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Figure 4.5: The nuclear densities p; and w2 used in the simulation.
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Figure 4.6: A realization of the nuclear density pu.

calculated using the formula

L—-1

1 /+1 i
N3 Z/g Vi(w,z)e =™ L
/=0
1 L1 ¢
Z —2imK +
- e L
VL =
1 [, ¢
Z —2imK +
_ e 9
VL =

+ (1 — gu(w)) /01 Va(z)e "KL dx).

ci(Vp)

1
/ Vi(w, x4 0)e ™KL dg
0

<¢M(w) /01 Vi(z)e ™KL d

z

The coefficients fol Vi(x)e "B L dr are pre-calculated analytically. The
same procedure is used to calculate the Fourier coefficients of ..
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In our code, unless otherwise stated, we take the Bernoulli parameter
p = 0.5, the discretization parameter N = 30, the Yukawa parameter m = 1,
and the number of electrons per unit volume N, = 1. Here, we impose the
neutrality condition N, = fF w(w, z) almost surely, for consistency with the
Coulomb case (see Chapter 2 for a discussion about the necessity of the
neutrality condition for Coulomb interactions). To compute expectations,
we use a Monte-Carlo method with Ny¢ realizations.

Our code has been written in C++. The eigenmodes of the matrix Hy, x
are computed using the linear algebra library LAPACK.

In the following sections, we give some numerical results of our simula-
tions.

4.4.2 The spectrum

We are first interested in the spectrum of H(w). As the operator H is ergodic,
the spectrum of H(w) is deterministic [125]. The following proposition says
that, in the linear case, the almost sure spectrum of H(w) is the limit of the
spectrum of the operator Hy(w) as L goes to infinity.

Lemma 4.4.1 (Thermodynamic limit for the spectrum). Let V' be of the
form (4.10) with Vi and Vo in L>°(T"). Then, a.s.,

¥ = Ureant10(Hr (W),
where X is the almost sure spectrum of the ergodic operator H(w).

Proof. For any w € ), [148, Proposition 1.4.3] gives

O'(H(w)) C UL62N+1U(HL(W))- (4.11)

In particular, if we denote by Q1 = {w, o(H (w)) = X}, then for any w € Qy,

¥ C UL62N+1U(HL(W))-

As P(Q;) =1, then

¥ C Ureant10(Hp(w))

almost surely. Let us show the inverse inclusion. Let L € 2N+ 1 and w € Q.
By Bloch theory, it is easy to see that

o(Hp(w)) C o(Ap), (4.12)

where 1
Ap = —§A + Vi,
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with V7, the LZ-periodic function equal to V(w,-) on 'z, is an operator on
L*(R%). Let \ € 0(Ar) and let us show that A\ € ¥. By [148, Lemma 1.4.4],
there exist L?-normalized functions (f,)nen in C2°(R?) such that

sup (AL — A)fns 9)2(may — 0.
geCE (RD) oo
HgHHl(Rd):l

As Ay is a periodic operator, then one can choose f,, and L,, € LN such that
supp(fn,) C I'z,,. Let

O (w) = {w' €Q,3relZ: VW, )=V,only, + x},

and

QQ - mnENQn(w)'

As the variables (g )z are independent, then for any n € N we have that
P(Q,(w)) = 1, thus P(Q) = 1. Let w; € QN Qy and x,, € LZ? such that
V(w,")=Vgon T, + x, We have

sup  ((H(w1) = A)fu(- = 2n), 9) 12(ra)

geCge (rY)
”g”Hl(Rd):l
= sup (AL — A) fu( — zn), 9>L2(Rd)
geC (RY)
HQHHI(Rd):l
= sup (AL = N fn, 9( + 20)) 2re)
geC (RY)
HgHHl(Rd):l
=  sup (AL = Nfw 9 r2wey —0.
geC (RY) oo
9l g1 gty =1

Therefore, by [148, Lemma 1.4.4], we have that A\ € o(H(w1)) = X, thus
o(Hp(w)) € ¥ for any L € 2N + 1 by (4.12). As ¥ is a closed set, we
conclude that for any w € €,

UL€2N+10'(HL(W)) C .
U

We represent in Figure 4.7 the spectrum of Hy, y(w) in the linear model,
with L = 240. The first two columns give the spectra of the pure crystals
(p = 0 and p = 1). For numerical efficiency, these spectra are calculated
using Bloch theory. Indeed, for the same accuracy, one needs to solve a
system of size NL x N L in the supercell method, while in Bloch theory, one
needs to solve L times a system of size N X N. The other columns represent
the spectrum of Hy, n(w) for Nyic = 21 realizations w obtained with p = 0.5.
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10

Figure 4.7: The spectrum of Hy 1 (w) in the linear model, with L = 240.
Columns 0 and 1 correspond resp. to p = 0 and p = 1. The other columns
correspond to 21 realizations w obtained with p = 0.5.

For the rHF model, we have the inclusion (4.11) by [148, Proposition
1.4.3]. The proof of the inverse inclusion should follow the same steps as the
proof of Lemma 4.4.1, as we have assumed (short-range) Yukawa interac-
tions. Figure 4.8 gives the spectra of Hy, y(w) in the rHF case for L = 160.
Similarly to the linear case, the first two columns give the spectra of the
pure crystals (p = 0 and p = 1). The difference in the maximum supercell
size used in our simulations (L = 240 in the linear model and L = 160 in
the rHF model) is due to the difference of the calculation time needed for
each model. Indeed, for each iteration of the rHF calculation, we need to
solve a system of the same size as that of the total calculation in the linear
case. Thus, the calculation time in the rHF model is Nj; times the one of
the linear model, Nj; being the number of iterations needed for the ODA
algorithm to converge.

In both cases, we can observe the asymptotic non-random character of the
spectrum of the Hamiltonian. In the linear case, we see that the disordered
material have spectrum in the common spectral gap of the pure crystals,
while this phenomenon does not appear in the rHF system we have studied.

4.4.3 Thermodynamic limit

In this section, we are interested in the convergence of the ground state
energy per unit volume and of the integrated density of states in the ther-
modynamic limit. For the linear model, these convergences have been proved
in [89, Th. 5.1]. For the rHF model, the convergence of the energy per unit
volume has been proved in [29, Th. 5.2| [Th. 2.5.2 Chapter 2|.
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Figure 4.8: Top: the spectrum of Hy r(w) in the rHF model, with L = 160.

Columns 0 and 1 correspond resp. to p = 0 and p = 1. The other columns

correspond to 21 realizations w obtained with p = 0.5. Down:

around the spectral gap.

zooming

In the linear case, the ground state energy of the system in the supercell

is

I, =Trp (Hpyg) -

The energy per unit volume L~1'I; converges, as L — 0o, to

(4.13)

I =Tr (H7),

7=1(H <ep)

where
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is the ground state of the system and e is the Lagrange multiplier corre-
sponding to the charge constraint Tr () = N.. The average trace per unit
volume Tr (A) is defined for any ergodic trace class operator by Tr (A) =
E (Tr (1rAlr)) (see Chapter 2 for details). The energy I, is approximated
by

I Ny =Tr (H NYLN) = Z ANn,

where we recall that Ay 1 < --- < Ay nr41 are the eigenvalues of the matrix
HL,N-
In the rHF model, the energy of the system in the supercell is

1

1
Iy, = §T1“L (—Arvyr) + §Dm,L(p'yL — UL, Py — ML)

The energy per unit volume L~'I; converges, as L — 0o, to

1 1
I= T (—Av) + 52,”(,07 — by Py — ), (4.14)

where D, is defined, for any stationary functions f and g by

~ g ( [ [ 1@Yale =) da dy) |

The kinetic energy is approximated by

D,.(f,9g

~—

1
§TrL(—AL7L,N) —Z/ |an ® dx

| NeL NL+1 2
=53 [ Y @) do
n=1"1L | j=1
2
N.L NL+1 ,,.
1 2im (. NL )
= 52/ Z <T <] - T)) unn(j)fj(z)| dx
n=17Tc| j=1
| NeLNLt1 ) o
47 . NL .
-3y (- ) funa()? d.
n=1 j=1

As to the interaction energy, it is approximated by

2
1 ( ) N ‘Ck,K(P) — ci(ur)
~D,1 — KL, —pL) =2 >

g m Ly = BL Py T 2 e m? + |K|?

9
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where the coefficients c& i (p) have been defined in (4.9). In our code, we
take a, = 10.

In Figures 4.9 and 4.10, we see that the discretized energy per unit volume
L_1IL7N converges as L — oo for both models a.s. and in average. We
have used Ny = 21 Monte-Carlo realizations. The limiting value can be
respectively be taken as an approximation of (4.13) and (4.14).
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Figure 4.9: The convergence of the energy per unit volume ILTN in the linear
model a.s. (top) and in average (down). The red and green lines correspond
to the perfect crystals.

As far as we know, there are no theoretical results on the convergence
rate of these quantities. We have evaluated the asymptotic convergence rate
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Figure 4.10: The convergence of the energy per unit volume ILTN in the rHF
model a.s. (top) and in average (down). The red and green lines correspond

to the perfect crystals.

for the average energy per unit volume

()

In(L)

oy, —
in our examples. The results are shown in Figure 4.11. The observed con-

vergence rate is then & = —1 in both cases. This confirms the intuition that
the supercell energy per unit volume behaves as

1y 1
=L —).
£+0(7)
The Integrated Density Of States (IDOS) of the Hamiltonian H and the
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Figure 4.11: Representation of In ( as a function of In(L) in

the linear model (top) and the rHF model (down).

IDOS of the supercell Hamiltonian Hj, are respectively given by
N:E—Tr (1(H<E)).

and 1
NL E— ETI”L (1(HL < E))

In the linear model, N7, converges weakly to A/. In the rHF model, the
convergence of the IDOS in the thermodynamic limit has not been proved,
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but we believe that the proof should follow from the proof of [29, Th. 5.2]
[Th. 2.5.2 Chapter 2|.
The discretized IDOS is a step function given by

NL+1
NN,L E— 7 Z 1>\N,n§E

n=1
(see Figure 4.12).

2

15

05 [

Figure 4.12: The IDOS of H, n(w) for the linear model with L = 240 and
for a realization w obtained with p = 0.5.

To illustrate the convergence of the IDOS per unit volume, we look at
the L' norm of N n on an interval I. In our code, we take I = (—00, Ecyt],
with Fewt = 10. In this case,

+
VLN Lt (o)) = Z Anm € D(Eeut — Ann)- (4.15)

In Figure 4.13 we see that ”NL7NHL1((—OO Fow)) ndeed converges as L — oo
in average. We also obtain a.s. convergence.

4.4.4 Localization properties

Anderson localization (see Section 1.5.1) is the presence in the almost sure
spectrum of H (w) of pure point spectrum with exponentially decaying eigen-
functions. When V is given by (4.10), it has been proved (see e.g. [58]) that
H = ——A + V is localized at all energies when there is disorder (p € (0,1))
and that there is no localization in perfect crystals (p € {0,1}) [152]. In the
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Figure 4.13: The convergence of the average of N y in L'((—00, Ecyt]) in
the linear model (top) and the rHF model (down). The red and green lines
correspond to the perfect crystals.

rHF model, we are not aware of any results on the localization properties of
the mean-field Hamiltonian.

We numerically investigate the localization properties of the Hamiltonian
in our two models. The spectrum of the supercell Hamiltonian Hy, is always
discrete. We thus characterize the eigenvalues by looking at the localization
or the spreading of the corresponding eigenfunctions. Precisely, for f in

L
A= {f L — periodic Radon measure, f > 0, / f= 1} ,
0

we consider the variance

vr(f) = Lot /ZHL 22 f(x) de — (/ZHL zf(r) dw)

2

L2 0<i<L
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The functional vy, is bounded and non-negative. Its minimal and maximal
value are given by the following lemma.

Lemma 4.4.2. The minimal value of vy, on A is 0, reached for f(zx) =
> kez Oarkr(x), for any a € R, and its mazimal value on A is - attained

for f(z) = 1.
Proof. 1t is easy to see that vy, (3 cz datkr(z)) = 0. Since vy, in non nega-

2
tive, then 0 is its minimum. Besides, as f +— f;—FL 22 f(x) do— ( ;+L xf(x)dx
is a concave functional for any ¢, then vy, is a concave functional. It follows
that

L L
UL <CU — %/0 Urf(x) d’l“> > %/0 UL(Urf) dr,

where U, is the translation operator. Finally, noticing that vy (U, f) = vr(f)
for any 7 € R, and that if f € A then z + L} fOL Urf(z)dr = 1/L, we
obtain for any f € A

L
1—12:UL <%> > %/O oL (f)dr =vr(f),

which concludes the proof of the lemma. ]

The lower vr(f), the more localized the function f. To measure the
localization of an eigenfunction vy, we look at the variance of the normalized
function f = ]vN,n\Q € A. The results obtained for our two models are
presented in Figures 4.14 and 4.16. For the linear model, as predicted by
the theory, we see that for p = 0.5 there is localization at all energies. When
p € {0,1}, we see that there is no localization. Typical eigenfunctions are
represented in Figure 4.15.

In the rHF case, the variances associated with the eigenvalues of the spec-
trum of Hy, y in the rHF model are higher than that of the linear case (see
Figure 4.16). These variances approach the maximal value of the variance
v, in some regions of the spectrum. We have represented in Figure 4.17 the
eigenfunctions corresponding resp. to the first and the last eigenfunctions
represented in Figure 4.16. It is not clear whether there is localization or
not.

4.4.5 Low concentration of random defects

We concentrate in this section on the case of a crystal with a low concen-
tration of random defects, that is, when the Bernoulli parameter p goes to
zero. In the linear model, we know [83] that the almost sure spectrum of
H(w) does not depend on p. However, when p is small, this phenomenon is
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Figure 4.14: In green: the spectrum of the Hamiltonian H;, y for the linear
model and with L = 240. In red: the variance v; associated with each
eigenvalue. In blue: the maximum value % of the variance. Top: a random
realization w obtained with p = 0.5. Down: a perfect crystal (p = 0).

difficult to capture numerically, as, at a fixed supercell size L, the Hamilto-
nian is determined by the L random variables (qx)i<x<r. When p is small,
the probability that all g, 1 < k < L, are equal to zero is high, and in this
case the spectrum of H(w) is the same as that of the perfect crystal. The
IDOS is a more precise description of the spectrum as it quantifies precisely
how many "states" per unit volume can be in a certain energy interval. The
IDOS has been proved to admit an expansion in powers of p of the form

N, :NO +19P+ O(pQ),

where N is IDOS of the perfect crystal and 9 is a function of the spectral
shift function between the unperturbed Hamiltonian and the Hamiltonian of
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Figure 4.15: The eigenfunctions associated with the eigenvalue Ay 1 for the
linear model and with L = 240. Top: a random realization w obtained with
p=0.5 (Ay;1 = —0.0174). Down: the perfect crystal corresponding to p = 0
(Anq = —0,03).

the system with a single defect. This result has been proved for the linear
model in [87] and for the rHF model in [92] (see also Chapter 3 of this thesis).

In Figures 4.18 and 4.19 we represent the L' norm of the IDOS (see (4.15))
as a function of p. We see that for both models, the L' norm of the IDOS
is almost a line. The error bars are relatively big as we only use Nyc = 15
realizations of our system.
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Figure 4.16: In green: the spectrum of the Hamiltonian Hy, x for the rHF
model and with L = 160, for a random realization w obtained with p =
0.5. In red: the variance vy associated with each eigenvalue. In blue: the
maximum value 1—12 of the variance.
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for a given realization w obtained with p = 0.5.
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Coarse-graining of kinetic
Monte-Carlo models

237



238



Chapter 5

Introduction and summary of
results

In this chapter, we present three classes of models that are commonly used in
molecular dynamics and discuss the "low barrier" problem in kMC models.
A summary of the results obtained in Chapter 6 is included in this chapter.
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5.1 Introduction

The second part of this thesis is concerned with the study of multiscale-in-
time systems, in the context of Molecular Dynamics (MD).

The main two objectives of MD are the calculation of macroscopic quan-
tities of physical systems containing a large number of atoms starting from
their microscopic structures on the one hand; and the numerical simulation
of non-equilibrium systems, on the other hand. Our work fits into the second
category. Similarly to the first part of the thesis, our results are theoretical
but they are motivated by numerical simulation considerations. The mathe-
matical fields involved are mainly probability theory and numerical methods.

In this chapter, we present the scientific context of the work detailed
in Chapter 6 and the main results we have obtained. In Section 5.2, we
present three classes of models that are commonly used in MD, namely,
the Hamiltonian dynamics, the Langevin dynamics, and kinetic Monte-Carlo
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models. Then, in Section 5.3, we focus on kMC models, present multiscale-in-
time systems and discuss the issue of finding effective dynamics to compute
macroscopic quantities. A summary of our results is also included in this
section.

5.2 Models in molecular dynamics

In this section, we describe the matter at the atomic scale in the framework of
classical statistical mechanics, where atoms are considered as point particles.
Hamiltonian dynamics is the fundamental system of equations governing the
motion of classical particles. Langevin and overdamped Langevin dynamics
are perturbations of the Hamiltonian dynamics which take into account the
effect of the environment. They are also commonly used in MD, both to
simulate the evolution of systems which are not isolated (e.g. in contact
with thermostats) and as a numerical tool to sample equilibrium measures
(e.g. the Boltzmann-Gibbs measure). Due to the metastable character of
these dynamics, they can be coarse-grained into discrete space dynamics.
An example of such discrete dynamics are the kinetic Monte-Carlo models
presented in Section 5.2.3.

5.2.1 Hamiltonian dynamics

In classical mechanics, a system of N particles (atoms for instance), of masses
mi,--- ,mpy, is described by a configuration (@, P) € (R*)" x (R?)" where
Q = (q1, -+ ,qn) and P = (p1,--- ,pn) are respectively the positions and
the momenta of the particles. The interactions between the particles are
modeled by the potential energy V(@) and the total energy of the system is
given by

£(Q,P) = %PTM’IP +LV(Q), (5.1)

where M = diag(mi,---,mpy) is the mass matrix. In ab-initio molecu-
lar dynamics, the potential V(Q) is given by In, () defined in (1.6), with
0= Zf\il d¢; and N, the number of electrons in the system. To simulate
such systems, one needs to solve, at each time step (thus for each new con-
figuration of the atoms) an electronic structure problem (see Section 1.2 and
Chapter 4). This approach is numerically very costly and cannot be used
for systems with more than a few hundreds of atoms. In practice, V(Q) is
approximated by an empirical potential. The latter is obtained by assuming
an a priori parametric form and fitting the parameters with experimental
data or ab-initio molecular simulations of small systems. In both cases, a
closed form of V(Q) as a function of @ is used. A simple form of potentials
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is the pair interaction potential, for which V is of the form

Vg, ,an)= Y, Va—ql).

1<i<j<N

A typical example of potentials V is the Lennard-Jones potential

v =4((2)"- (2))

where ¢ is the depth of the potential well and 2'/%¢ is the distance at which
the potential is minimal. The Lennard-Jones potential is particularly accu-
rate for noble gas atoms. See e.g. [139] for other forms of potentials.

When the system is isolated, the dynamics of the particles is given by
Newton’s law of motion, or equivalently by the Hamiltonian dynamics as-
sociated with the Hamiltonian function (5.1). It is the system of the 6N
coupled ODEs:

_ _oas—1
{ dQ(t) = VpE(Q, P)dt = M~ P(t)dt (5.2)

dP(t) = —VoE(Q, P)dt = —VV(Q(1))dt.

Under regularity conditions on the potential V|, (5.2) admits a unique so-
lution. In practice, (5.2) is discretized using symplectic numerical methods,
which have the characteristic feature of (almost) conserving the total energy
of the system over a long simulation time. An example of such algorithms is
the Stormer-Verlet scheme [154] which reads

Qni1=Qn+AtM'P, iy
Poi1 = Poy1y2 — VV(Qni1)At/2,

where At is the time step.

5.2.2 Langevin dynamics

In Section 5.2.1, we have supposed that the system we study was isolated.
However the external environment, such as air or solvent frictions, or the
fluctuations due to the coupling with a thermostat often affect the dynam-
ics of the system. Langevin dynamics is a perturbation of the Hamiltonian
dynamics that models molecular systems at constant temperature 7', and
it takes into account two types of external effects: random fluctuations of
Brownian [22] type, and viscous effects through a friction force term propor-
tional to the velocity of the particle. Note that this dynamics can be derived
as the limit dynamics of an atom immersed in a heat bath of infinitely many
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light particles (see [42, 43]). The dynamics is then given by the following
system of stochastic differential equations:

dQ(t) = M~1P(t)dt
{ dP(t) = —VV(Q(t))dt — YM~P(t) 4+ \/2v5-1dW,,

where ~y is the friction coefficient, 5 = 1/(kpT), kp being the Boltzmann
constant, and (W) is a Brownian motion. Under regularity and integra-
bility conditions on the potential V', (5.3) admits a unique solution Y; =
(Q(t), P(t)) which is a continuous Markov process. The infinitesimal gen-

erator associated with (Y;) is given, for any smooth enough function ¢ :
(RN x (R*)N — R, by

(5.3)

(Le)(g,p) = M~ 'p-Vop(q,p) — (YM'p+VV(q)) - Vpe(q,p)
+787 Ape(q, p).-

In practice, (5.3) is often discretized using the Briinger-Brooks-Karplus (BBK)
algorithm, which is a generalization of the Stérmer-Verlet algorithm to the
stochastic setting.

Overdamped Langevin dynamics
The overdamped Langevin dynamics is obtained from the Langevin dynamics
by setting v = 1 and taking the limit M — 0. It reads

dQ(t) = —VV(Q(t))dt + /2B~ 1dW, (5.4)

where the sole position variable ) appears. The same conditions on V as
in the Langevin case ensure the existence and the uniqueness of a Markov
process solution of (5.4). Its generator is given, for any sufficiently smooth
function ¢ : (R®)N — R, by

(L) (q) = =VV(q) - Veo(q) + B Ap(q).

As we have explained above, Langevin and overdamped Langevin dynam-
ics can be derived from the Hamiltonian dynamics and model the dynamics
of a physical system. In this case, the parameters v and M and the potential
V' are given by the physical properties of the system. These dynamics can
also be seen as a numerical tool for sampling measures. Indeed, in statistical
mechanics, a macroscopic quantity is defined as the average (A) of the corre-
sponding microscopic quantity A(q, p). This average is taken with respect to
a probability measure y on the phase space (R?)™ x (R®)Y, which depends
on the statistical ensemble at hand. For example, if the canonical ensemble
is considered (the number N of particles, the temperature 7" and the volume
are fixed), the measure p is given by the Gibbs measure:

du(q,p) = Z ' exp (—BE(q, p)) dqdp, (5.5)

242



where Z is a normalization factor. We thus wish to compute the ensemble
average

@ﬂz/ Alg, p)du(a.p), (5.6)
(R3)N x (R3)N

that provides macroscopic information on a system (e.g. the pressure) on
the basis of a microscopic model (encoded in the energy £ that appears
in (5.5)). However, the integral (5.6) is an integral in high dimension. Stan-
dard quadrature rules can therefore not be used to evaluate it. One method
to compute (5.6) is to consider a process (q(t),p(t)) which is ergodic with
respect to the measure i, that is, a process that satisfies for any u-integrable
observable A,

/ Ala.p)dnla.p) = Jim 7 [ Alao)pe)ds. (57
(R3)N><(]R3)N oo 0

The average (A) is then approximated by the one-dimensional integral over
time of the right hand side of (5.7), instead of the high dimensional inte-
gral (5.6). Overdamped Langevin dynamics gives a process (Q(t) which is
ergodic with respect to the position part of the Gibbs measure, and can thus
be used to compute (5.7) for observables A that are independent of p. For
observables that depend on ¢ and p, one can use Langevin dynamics with any
~ > 0. In this case, the parameter v is chosen to ensure numerical efficiency
rather than physical accuracy.

Metastability

Langevin and overdamped Langevin dynamics are generically metastable.
This means that a system following these dynamics will spend a long time
in a metastable region of the phase space, then will quickly move to another
metastable region. These low energy regions (high probability) are separated
by high energy barriers (low probability). We present in Figure 5.1 a typical
trajectory of such systems. In practice, a direct time integration of (5.3)
and (5.4) requires very short time steps due to stability requirements. Con-
sequently, in view of the limited computational capacities, the physical time
simulated does not exceed few microseconds for moderate size molecular sys-
tems. Because of the metastable character of the dynamics, this duration
is far from being enough to observe many interesting physical and chemical
phenomena such as the diffusion and the clustering of point defects in crys-
tals for instance. A simplification of these models consists in coarse-graining
the phase space into a discrete set of states which represent the metastable
positions of the system. On the typical example of Figure 5.1, the state of
the system would be described by a scalar variable equal to —1 if the system
is in the left well and equal to 1 if the system is in the right one. Examples of
such models are kinetic Monte-Carlo models that we present in the following
section. Adopting this approach allows one to simulate typical systems over
much longer times scales than with MD.
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Figure 5.1: A typical trajectory of a molecular system.

5.2.3 Kinetic Monte-Carlo models

In kinetic Monte-Carlo (kMC) models, the state of the system is valued in a
discrete set E, whose elements represent the metastable regions of the origi-
nal dynamics. The key assumption in kMC models is that the system stays
so long in a metastable region (compared to the duration of the transition to
another metastable region) that it forgets where it came from. The resulting
dynamics is then a continuous in time, discrete in space, Markov process (Y}),
also called a jump process [45]. This assumption is well justified for low tem-
perature dynamics as the difference between the time spent in a metastable
state and the transition time is large, but its validity is questionable at high
temperatures when this difference gets smaller.

Jump processes are determined by transition rates (qyy/)y Ly When the
system is in a state y, then

e it stays there for a time S, which is a random variable distributed
according to an exponential law of parameter

Qy ‘= Z Qyy'
YEeE, y'#y
that is, P(S <t) =1 —exp (—qyt).

e At this time S, it jumps to another state. The probability that it

jumps to the state 3’ # y is given by qz,yy"

The transition rates (qy,y/)y ey mainly depend on the shape of the po-
tential V. They are considered as an input in kMC models and are often
obtained by Transition State Theory [46] from the underlying MD model.
If the transition rates are well approximated, the kMC model is accurate in
the sense that the trajectories given by this theory have the same probabil-
ity law as the trajectories of the original Langevin or overdamped Langevin
dynamics [155].
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In practice, the number of metastable states is so large that the cost of
the a priori determination of all the possible states of the system and the
corresponding transition rates is prohibitive. On-the-fly kMC models [71],
where the possible states and the transition rates are calculated in a neigh-
borhood of the current state as the simulation proceeds, are often used to
overcome this issue. Otherwise, in certain regimes, it is possible to represent
the dynamics on a smaller state space, depending on the quantities of inter-
est. In some situations, the derivation of such dynamics can be rigorously
proved, but in general, this derivation is only formal. In the latter case, a
parametric form of the reduced dynamics is assumed and the parameters are
obtained by comparison with the complete dynamics simulation. We present
in the following section a particular regime where the derivation of a reduced
dynamics is possible.

5.3 Multi-scale in time systems in kMC models

We consider in this section situations where many time scales are present
in the kMC model. It is indeed common for statistical systems to evolve in
an energy landscape with high and low barriers (see Figure 5.2). Therefore,
the state variables can be decomposed into slow and fast variables. On a
typical trajectory, the values of the fast variables change many times before
a significant evolution of the slowly varying variables is observed. Therefore,
a direct discretization is numerically very costly. This problem is known as
the low barrier problem [155]|. To overcome this difficulty in practice, many
approaches have been proposed by applied physicists and chemists [37, 48,
117, 122]. We mention the approach consisting in raising the low barriers so
that the transition between metastable states occur more often. When used
for sampling purposes, the so obtained time averages must be appropriately
"debiased" to converge towards the canonical average of the observables
under consideration. Another approach consists in gathering states separated
by low barriers into “super-states”, so that all barriers between these super-
states are of the same order of magnitude.

In [93] (see also Chapter 6 of this thesis), we follow the latter idea and
consider simple models for which we are able to rigorously prove the path-
wise convergence of the reference dynamics to an effective dynamics. As
expected, the asymptotic dynamics that we identify coincides with the one
that is used in practice in the works mentioned above. This effective dy-
namics is a kMC model where the transition rates are given as weighted
averages of the original dynamics rates, with weights given by the invariant
measure of the fast variables. The intuition behind this result, is that, for
large time-scale separation between the slow and fast dynamics, the fast dy-
namics is so fast that it reaches a local equilibrium where the configurations
are distributed according to the invariant measure.
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In the framework of Langevin and overdamped Langevin dynamics, the
construction and the analysis of effective dynamics has been undertaken in
several works, see e.g. [96, 97|. In these works, a macroscopic quantity of
interest ¢ is considered. Using the large time-scale separation between the
slowly varying variable Z; = £(Y};) and the fast varying microscopic variables,
an effective dynamics on (Z;) is rigorously derived.

The difficulty of the questions addressed in [96, 97, 93| comes from the
fact that the slow observable is not a Markov process and keeps in memory
information about the fast variables. In order to obtain an effective dynamics
on the slow variable only, the fast variables need to be filtered out. This
memory effect is negligible in the large time-scale separation regime.

To fix ideas, we now present one of the three models treated in [93] (see
also Chapter 6). We consider a particle moving in a potential energy surface
presenting two macro-states separated by a high energy barrier. Inside each
macro-state, there are finitely many micro-states separated by relatively low
energy barriers (see Figure 5.2). The ratio € between the low energy barriers
and the large energy barriers encodes the difference of time scales between
the (fast) dynamics within a macro-state, where low energy barriers have to
be overcome, and the global (slow) dynamics, where large energy barriers

have to be overcome.
\AM \W/

Figure 5.2: Example of a potential energy surface with two macro-states of
energy wells.

The dynamics of the system is then given by the jump process 7? =
(X;,Z;), where the variables X; and Z, respectively indicate in which micro
and macro states the system is located. Yi is valued in {z1, -+ ,xm}, m
being the number of micro-states in each macro-state and Z; is valued in

{0,1}. The intensity matrix of the process (Y7) is of the form

C
Qo <Cor ) (5.8)

eCro Q1
The rates contained in Qy and (1 correspond to the transition rates between
micro states of the same macro-state (internal dynamics), while the rates in

Co1 and Cp determine the transition rates between states belonging to
different macro states.
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We have studied the long time behavior of a simple function of the slow
variable Z, which is the macro-state in which the particle is located. Other
functions can be treated in a similar way. Under the assumption that the in-
ternal dynamics within a macro-state is irreducible (thus admitting a unique
invariant measure), we prove that, in the limit of asymptotically large time
scale separation, namely when e goes to zero, the dynamics of the slow vari-
able converges to a jump process over the two macro-states. The transition
rates of this limiting process are, in some sense, the weighted averages of the
transition rates of the reference model.

Theorem 5.3.1. [93, Th. 2.3][Th. 6.2.3 Chapter 6] Under the zrreduczbzlzty
assumption on the internal dynamics, the rescaled-in-time process Z; = Zt /e
converges, as € goes to 0, to a process (Z;) which is a Poisson process of

intensity matrix
0 Xo
(00 59)

where, for z € {0,1}, the transition rate X, is given by
Z 7, (x) Z Con—z (:c, CC/)
x x!

and m, is the invariant measure of the internal dynamics z.

Note that we obtain a convergence on the path of the system (weak
convergence of the corresponding probability measure) and not only on the
state of the system for any given time. The proof is essentially based on
tightness criteria for probability measures on cad-lag (right continuous with
left limits) functions and on both the existence and the uniqueness results of
the martingale problem, in particular to identify the asymptotic dynamics.

We have also carried out numerical simulations illustrating our theoretical
conclusions.

For example, for the model presented above, we simulate a system with
m micro-states in each macro-state and for which the transitions are only
possible from one well to its two nearest neighbors. In addition, we apply
periodic boundary conditions. The matrices Qq, @1, Cp,1 and Cip of the
intensity matrix (5.8) read

Qo=0Q1=0Q and Cp1=C1p=0C

with
L Y
0 0
Q= , C=
1 01
1 0 1 0 0
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The limiting intensity matrix (5.9) is

(x0)

with A = 2/m. We monitor the probability distribution of the first exit
time S§ of Z; from a macro-state, and check that this distribution indeed
converges to the asymptotic distribution given by Theorem 5.3.1, which is
an exponential distribution of parameter A\. On Figure 5.3, we show the
convergence of the empirical expectation of S§ to the asymptotic value. We
have used Nyic = 10* Monte-Carlo realizations of the process to compute
95% confidence intervals. We indeed observe the expected convergence when
e — 0. On Figure 5.4, we show the histogram of Sj in the case m = 20 for

w
e
HH
_
! —
: e
HH
T
BH
H
i
_

ol v v
10° 10 1 001 104 10° 10 1 001 104 10° 10 1 001 104
epsilon (m = 3) epsilon (m = 5) epsilon (m = 7)

Figure 5.3: Empirical expectation of S§ as a function of ¢, for m = 3 (left),
m = 5 (middle) and m = 7 (right). The asymptotic values (when ¢ — 0)
are also represented (solid lines).

two values of €. We again observe a good qualitative agreement with the

limit distribution for small enough e.
We refer to Chapter 6 for details.
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Figure 5.4: Distribution of S§, the first exit time from a macro-state (m
20). Left: large ¢ = 1. Right: small ¢ = 1073,
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Chapter 6

Effective dynamics for a kinetic
Monte-Carlo model with slow
and fast time scales

The results of this chapter were the object of an article [93], which has been
submitted for publication. We consider several multiscale-in-time kinetic
Monte Carlo models, in which some variables evolve on a fast time scale,
while the others evolve on a slow time scale. In the first two models we
consider a particle evolving in a one-dimensional potential energy landscape
which has some small and some large barriers, the latter dividing the state
space into metastable regions. In the limit of infinitely large barriers, we
identify the effective dynamics between these macro-states, and prove the
convergence of the process towards a kinetic Monte Carlo model. We next
consider a third model, which consists of a system of two particles. The state
of each particle evolves on a fast time-scale while conserving their respective
energy. In addition, the particles can exchange energy on a slow time scale.
Considering the energy of the first particle, we identify its effective dynamics
in the limit of asymptotically small ratio between the characteristic times of
the fast and the slow dynamics. For all models, our results are illustrated
by representative numerical simulations.
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6.2.3 Numerical illustration . . . ... .. .. ... ... 269

6.3 A particle in a potential energy landscape with
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6.1 Introduction

Langevin dynamics is commonly used in computational statistical physics to
model the evolution of atomistic systems at finite temperature. The state of
the system evolves according to a stochastic differential equation, and is thus
modelled as a real vector valued Markov process. Generically, the state space
of such atomistic systems can be decomposed into several metastable regions,
separated by high energy barriers. It is therefore natural to introduce kinetic
Monte-Carlo models as a simplification of the continuous-in-space reference
model, where the state space is coarse-grained into discrete states that each
corresponds to a metastable region of the continuous model. We refer e.g.
to [95] for a formalization of this idea. The resulting dynamics is a time
continuous Markov chain, also called jump process.

In this work, we consider such a jump process, with the particularity that
two different time scales are present in the system. On a typical trajectory,
many jumps of the fast degrees of freedom occur before a significant evolution
of the slowly varying variables is observed. Therefore, a direct discretization
is numerically very costly. The aim of this work is to find an effective dy-
namics for the slow variables (which turns out to be again a kinetic Monte
Carlo model) while filtering out the fast variables. This effective dynamics
is derived in the regime of large time scale separation between the slow and
the fast variables.

The problem considered here is well-known in the applied physics and
chemistry communities, where it is called the low barrier problem [155]. Ac-
cording to [134], “the low-barrier problem prevails as one of the long-standing
challenges to kMC simulations”. Several practical approaches have been pro-
posed to address this issue (see e.g. [37, 48, 117, 122]), which include either
raising the low barriers (so that the fast processes become slower, and all pro-
cesses end up sharing the same characteristic time scale), or gathering states
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separated by low barriers into so-called “super-states”, so that all barriers
between these super-states are of the same order of magnitude.

In this work, we follow the second track mentioned above. We consider
simple models for which we are able to rigorously prove the convergence of the
reference dynamics to an effective dynamics. As expected, this asymptotic
dynamics that we identify coincides with the one that is used in practice in
the works mentioned above.

We will successively perform this derivation for three different models.

First, in Section 6.2, we consider a particle subjected to a potential energy
presenting two macro-states separated by a high energy barrier. Inside each
macro-state, there are finitely many micro-states separated by relatively low
energy barriers (see Fig. 6.1). The ratio between the low energy barriers
and the large energy barriers is characterized by a parameter € that we will
take asymptotically small. This ratio encodes the difference of time scales
between the dynamics within a macro-state (only low energy barriers have
to be overcome, and the dynamics is therefore fast), and the global dynamics
(for which large energy barriers have to be overcome, making this dynamics
slow). See Section 6.2.1 for a complete description of the model.

We are interested in the long time behavior of functions of the slow
variables. We consider in this study the simplest case of such function, that
is, the macro-state in which the particle is located. At the price of additional
technicalities, our approach carries over to more general functions of the slow
variables.

Under an irreducibility assumption on the dynamics within the macro-
states, we prove that, in the limit of asymptotically large time scale sep-
aration (namely when e goes to zero), the dynamics of the slow variable
converges to a jump process over the two macro-states. The transition rates
of this limiting process are, in some sense, the weighted averages of the tran-
sition rates of the reference model. We underline that our convergence is
a convergence on the path of the system, and not only on the state of the
system at any given time. Our main result, Theorem 6.2.3, is presented in
Section 6.2.1 and proved in Section 6.2.2.

In Section 6.2.3, we present detailed numerical results illustrating our the-
oretical conclusions. In particular, we monitor the probability distribution
of the first waiting time in a macro-state, and check that this distribution
indeed converges to the asymptotic distribution.

In Section 6.3, we turn to our second model, which is a generalization
of the model considered in Section 6.2 where the potential energy presents
infinitely many macro-states instead of two. To simplify the problem, we
assume that the internal dynamics within each macro-state are identical
(see Section 6.3.1 for a detailed presentation of the model). In this case,
the effective dynamics is a time continuous random walk with Poissonian
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waiting times, as stated in our main result of that Section, Theorem 6.3.1.
We provide some representative numerical results in Section 6.3.2.

We finally turn in Section 6.4 to our third model, which is different in
spirit from the models studied in Sections 6.2 and 6.3. One interest of this
last section is to show that the arguments employed to analyze the first two
models can be used to study a model different in nature. The system at
hand in Section 6.4 contains two particles, each one being described by k
spin-like variables. The system evolves either due to the internal evolution
of each particle (which occurs on a fast time-scale), or due to the interaction
between the two particles (which occurs on a slow time-scale). In the first
case, the energy of each particle is preserved while in the second, there
is an exchange of energy between the two particles. Note that the total
energy of the system is preserved in both cases. Our quantity of interest
is the energy of the first particle, which is indeed a slow observable (see
Section 6.4.1 for a complete description of the model). We show that the
dynamics of the first particle energy converges to a jump process on the
(finite) set of admissible energies, this set being determined by the initial
energy (see Section 6.4.2, Theorem 6.4.1, for our main result). We collect in
Section 6.4.3 some numerical illustrations.

The difficulty of the question we address stems from the fact that the slow
observable is not a Markov process: this is a closure problem. A typical tool
in this context is the Mori-Zwanzig projection formalism, which is described
in details in [60]. This leads to approximating the slow observable by a
process which has some memory in time. In our work, we assume that a
time-scale separation is present in the system. Memory effects may then be
neglected, and the slow observables be approximated by a Markov process.
As often the case in such settings, an essential ingredient of our proof is an
averaging principle (see [126] for a comprehensive review of that principle
in various contexts). We refer to [54, 140, 141] for related works in the
framework of discrete time Markov chains in a discrete state space.

As pointed out above, kinetic Monte Carlo models are somewhat obtained
as a coarse-grained approximation of real valued Markov processes, such as
the Langevin equation (or its overdamped limit). In that framework, the
construction and the analysis of effective dynamics has been undertaken in
several works, see e.g. [96, 97] and the comprehensive bibliography contained
therein.

Throughout this chapter, we use several well-known results that we recall
in Appendix 6.A below.
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6.2 A particle in a potential energy landscape with
two macro-states

In this section we study the dynamics of a particle in a potential energy with
two macro-states (see Fig. 6.1). The state of the particle is represented by
a macroscopic variable (the index of the macro-state), which can take here
only two values, and a microscopic variable (the index of the micro-state
within the macro-state). We are concerned with the long time behaviour
of the macroscopic variable. In Section 6.2.1, we present the model and
state our convergence result (Theorem 6.2.3), the proof of which is given in
Section 6.2.2. Numerical results illustrating our theoretical conclusions are
gathered in Section 6.2.3.

L

Figure 6.1: Example of a potential energy with two macro-states of energy
wells.

6.2.1 Presentation of the model and main result

We now formalize the model described above. We introduce a parameter ¢
which represents the ratio between the characteristic time of the internal dy-
namic inside a given macro-state (fast time scale) and the characteristic time
of evolution of the macro-state, namely the characteristic time the system
spends in a given macro-state before going to the other one. For simplicity,
we assume that both macro-states contain the same number of micro-states.
The macro-states are labelled by 0 and 1, whereas the micro-states are la-
belled as 1, 2, ..., m. We set M = {1,2,... ,m}.

The state of the particle is modelled by a time continuous Markov chain
YF = (X5, Z§), which takes its values in the space E = M x {0,1}. The
first coordinate of Y7 represents the micro-state of the particle inside a given
macro-state, and thus takes its value in M. The second coordinate deter-
mines in which macro-state the particle is located at time t: Zf = 0 or
1.

We denote by Q° the transition matrix of the process YE. Let Qo and
Q1 be two m x m matrices that determine the internal dynamic within each
macro-state and let Cp 1 and C} g be two m x m matrices that determine the
coupling between micro-states that belong to different macro-states. The
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transition rates of Y_f are given by

Q° ((w,z) ) (m',z)) = Q. (w,x') , z=0orl, o #2a,
Q° ((3:, z), (CC/, z')) = eC,1_, (ﬂ:,x') for z # 2/,

Thus, Q° is of the form
G& _ < QO 800,1 >
eCip @1 )~

Remark 6.2.1. As always for Markov jump processes, the diagonal entries
of the transition matriz are irrelevant. Our convention is to take them equal
to zero.

The process Y is a jump process. It means that, when it is in a state
(z,z), then

e it stays there for a time S, which is a random variable distributed
according to an exponential distribution of parameter

G (z,2) = Z Q° ((z,2),(2,7)),

(z’,z’)EE
(o .2")# (2.2)

that is P (S <t) =1—exp (—¢ (x,2) t).
e At this time S, it jumps to another state. The probability that it
jumps to the state (2/,2") # (x, z) is given by
Q ((z,2), (2, 2)
T (r,2)

Note that the paths of a jump process are by convention right continuous,
with left limits (they are thus cad-lag functions).

We are interested in the behaviour of a macroscopic observable, that is
a function of the slow variable 7?. The dynamic inside a given macro-state,
i.e. when the variable z does not change, has a characteristic time of the
order of O (1) (i.e. independent of ¢), whereas the characteristic time for the
particle to go from one macro-state to the other is of the order of O (6_1).

We therefore consider henceforth the rescaled-in-time process <7i/5> . We
t

introduce the process Y;® := 7; Je> which is a jump process of intensity matrix

Q)* given by
~1
e e Qo Coa
= ’ . 6.1
Q ( CI,O 6_1Q1 ) ( )
We assume that
the matrices Qo and @); are irreducible, (6.2)

therefore admitting unique invariant measures denoted by 7y and 71, respec-
tively.
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Remark 6.2.2. Due to our convention on the transition matriz (see Re-
mark 6.2.1), the invariant measure 7 of a transition matriz Q = {q; ;}, i<m

satisfies 71 Q = L A, where A is a diagonal matriz with A; = Z;n:1 Qi j-

Definitions and notations We denote by Dg [0,00) the set of cad-lag
functions defined on [0,00) and valued in R, and by Cg[0,00) the set of
continuous functions defined on [0, 00) and valued in R. Endowed with the
Skorohod metric (see e.g. |45, p. 116-118|), Dg [0, 00) is a complete separable
space.

A family of probability measures P,, on Dg [0, 00) is said to weakly con-
verge to a probability measure P on Dy [0, 00) if, for any bounded continuous
function ® on Dg [0, 00),

lim <I>d7>n:/<1>d7>.

n— o0

A family of random variables X,, valued in Dg [0,00) is said to converge
in distribution to X € Dg [0, 00) if the distribution of X, weakly converges
to the distribution of X. Throughout this study, we use the symbol = to
denote that convergence.

Main result We are now in position to present the main result of this
section. For z € {0, 1}, we define

6z,lfz (CC) = Z Cz,lfz (x,x/)
z’'eM

and

A= Cor-(@m (@)=Y m(x) Y, Cor.(z,2). (6.3)

rzeM rxeM z'eM

Theorem 6.2.3. Let YF = (X7, Z;) be the jump process of intensity ma-
triz (6.1) and starting from an initial condition Yo = (Xo, Zy) independent
of e. We make the assumption (6.2). We denote by P the distribution of the
process (Z5) and by P the distribution of the jump process of initial condition

Zy and of intensity matriz
0 Xo
( - ) (6.4)

where N\g and Ay are defined by (6.3). Then, we have P¢ = P as e goes to 0.

Note that, in (6.4), we have used the convention detailed in Remark 6.2.1.

The above result confirms the intuition according to which, when & goes
to zero, the internal dynamic within each macro-state is speeded up, thus
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attaining a local equilibrium where configurations are distributed according
to the invariant measures my and 7y within the macro-states. In the limit
when ¢ goes to 0, the transition from one macro state z to the other one, 1—z,
occurs with the frequency ., which is a weighted average (over the micro-
states z, with weights given by the invariant measure 7,) of the frequencies
C.1-»(x). In turn, these frequencies are the transition frequencies from the
micro-state x of the macro-state z to the other macro-state.

As already emphasized in the introduction, we point out that the above
theorem states a convergence result on the path (Z7):>0, and not only of the
random variable Z; at any time ¢.

6.2.2 Proofs

To simplify the notation, we first consider the case when both macro-states
are similar: in that case, Qo = Q1 = @ and Cy1 = C1 9 = C. The proof of
Theorem 6.2.3 is performed in Section 6.2.2.2, and uses some intermediate
results shown in Section 6.2.2.1. We briefly mention in Section 6.2.2.3 how
to adapt the proof to handle the general case.

The following computation will be very useful in what follows. Recall
that the generator of the process Y is given by

= > Q@) (¢ (#'2) — 0 (x,2)
+ Z C(w,x’) (Lp (m',l — z) —Lp(x,z)).

We refer the reader to the textbook [45, Section 4.2] for more details on
semi-groups and generators associated to jump processes.

Taking ¢(x, z) = 1,—1(x, ) in the above relation, we obtain

Lf1,-; (z,2) Z C(z,2') 1= (z, 2) + Z C (z,2') 1L—o(z, 2),

z'eM z'eM

and thus, taking (x,z) = Y = (X}, Z7), we have

Lo () = S € (X52) (1 - 225) = T(X5) (1 - 275)
z'eM

where C(z) =Y c1 C (z,2"). We now define the process (M );>0 by

t
M = Laa(V) - a0 - [ L1 () ds



Using Proposition 6.A.1, we see that My is a martingale with respect to the
filtration F; = o (Y, s < t), and that its quadratic variation is given by

(M%) = /Ot (Lo1om1 (YS) = 2120 (YF) L71a= (V) ds
t@(xg) (1—225) — 2250 (X5) (1 - 22%) ds

t
C(X5) (1—2Z%)%ds

t
(X5)ds

t
g(X3)ds + M, (6.6)

I
S— S— — —,
Ql

where A = \g = Ay (see (6.3)) and

g(x)=C(z) - = Z C(z,a") — A (6.7)

z'eM

We have used in the above computation the fact that (1 —225)% = 1, a
direct consequence of the fact that Z; = 0 or 1.
In what follows, we will use the fact that

t t
Zf:ZO+/ f(Y;)der/ A1 —27°) ds + M; (6.8)
0 0

with

flz,z)= ( Z C (z,2") — A) (1-22), (6.9)

z'eM

which is a straightforward reformulation of (6.5).

6.2.2.1 Some intermediate results
The following results are useful in the proof of Theorem 6.2.3.

Lemma 6.2.4. Let F = {0,1}, Zy be a random variable valued in F,
Ao, A1 > 0, and (Zt)tzo be a stochastic process on F. If the process

t
Mt:Zt—Zo—/ ()\0—()\0+)\1)Z8)d8
0

is a martingale with respect to the natural filtration of (Z;);~q, then (Z;)i>o0
s a Markov jump process of initial condition Zy and of intensity matrixz given

by
B 0 N\o
R—< MO ) (6.10)
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Proof. We use the uniqueness result of the martingale problem associated
to the Markov jump process with intensity matrix R introduced by D.W.
Stroock and S.R.S. Varadhan (see e.g. [78, Theorem 21.11]). We recall a
simple version of that result in Lemma 6.A.2 below. In view of that result,
we only need to check that, for any bounded function ¢ : F' — R, the process

ME = o (Z)) — ¢ (Zo) - /0 Lo (Z,) ds

is a martingale, where L is the generator of the jump process associated to
the intensity matrix (6.10), which reads

Lo(z) = Y R(z,7) (¢(2) = ¢(2)) -

2'eF
We note that
Lp(z = 0) = Ao (p(1) =¢(0)),  Lp(z=1) = A (¢(0) = ¢(1)).
Since F' = {0, 1}, any bounded function ¢ : F' — R is of the form
Vz€eF, ¢(z)=ady, +bd.=a+ (b—a)d.,

for some a and b, where 01, is the Kronecker symbol. The application ¢ —
My is obviously linear, and it vanishes for constant functions. Therefore, to
show that M is a martingale for any bounded function ¢ : F — R, it is
sufficient to show that Mt‘slz is a martingale. On F, we see that §;, = Id.
We thus have

Mp =

t
= Zt—ZO—/LId(ZS)dS
0
t
= Zt—Zo—/ ()\0—()\0+)\1)Z5)d8.
0

Using the assumption of the Lemma, we have that Mf 2 is a martingale.
This concludes the proof. ]

Lemma 6.2.5. Let g : R — R be a Lipschitz function. Then, the function
b defined by

®: Dr[0,00) — Cgrl[0,00) C Dg|[0,00)

z (/Otg(x(s))d,S)t

18 continuous.
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Proof. Let (z,,)nen be a sequence in Dy [0,00) and x in Dg [0, 00) such that
(zn)nen converges to x in Dg [0,00) for the Skorohod topology. We show
that (®(xy,))nen converges to ®(z) in the Skorohod topology.

We first observe that, for any y € Dg[0,00), the function ®(y) is con-
tinuous. Since the limit function ®(z) is continuous, the convergence of
(®(z1))nen to ®(z) in the Skorohod topology is equivalent to the conver-
gence of (®(zy))nen to ®(z) according to the norm || - [[coo,7y), on any
compact time interval [0,7] (see e.g. [12, p. 124]).

We now proceed and show that, for any 7' > 0, [|®(x,) — ®(2)||co 0,17
goes to zero as n goes to co. Using the characterization of the convergence of
(1 )nen to x given in Proposition 6.A.4, we know that there exists a sequence
of strictly increasing, continuous maps \,, defined on [0, c0) satisfying (6.45)
and (6.46) below. We then have, for any ¢ € [0,77],

@ (2n) (8) = @ (2) ()] = /0( (zn (s)) — g (x(s))) ds

< /0 19 (2 (5)) — 9 (& O ()] ds + / e gz (3))] ds.
(6.11)

The first term of the right-hand side of (6.11) tends to 0 as n goes to oo
uniformly on [0,7]. Indeed,

sup / 9 (xn (s)) =g (x (A (s)))|ds < T sup [g(zn(s)) —g(x (A (s)))l

te[0,7] /0 s€[0,T]

< TCy sup |zn (s) —z (A (9))],
s€[0,T7]

where Cj is the Lipschitz constant of g. Using (6.46), we deduce that

lim sup / lg (zn, (5)) — g (x (A (5)))]ds = 0. (6.12)

=200 ¢e[0,T7

We now turn to the second term of the right-hand side of (6.11). Take a > 0.
Using [11, Lemma 1 p. 110], we know that there exists a subdivision

O=to<ty<---<t, =T
of [0, 7] such that, for any 1,
sup{lz (s) —z ()], t; <s<t<tjy1} < a.

This result is based on the fact that (i) a continuous function on a compact
set is also uniformly continuous on this set, and (ii) for any 5 > 0, a cad-
lag function on a compact set has a finite number of jumps larger than the
threshold .
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Using this subdivision of [0, 7], we bound the second term of the right-
hand side of (6.11) by

Aw@wmm—mB\@<2/ ()~ ga (s))l ds

t

i+1
SZ%/ 2O () — 2 ()] ds. (6.13)
i=0 ti

Let us introduce § > 0 such that for any 0 < i <r—1, we have 20 < t;11—t;.
As there is a finite number of points ¢;, such a § > 0 exists. Using the
property (6.45) of \,,, we know that there exists IV such that, for any n > N,
we have sup |\, (s) —s| < 0. We therefore deduce that, for any n > NV,

s€[0,T]
r—1 tiv1
> [T O - a (o) lds
i=0 7t
r—1 it1—0
< Z/ |z (An (8) —2(s)|ds +4r6  sup |z (t)|
i=0 Jtito te[0,7+46)
r—1
< Z tiv1 —t; —20)a+4rd sup |z (t)|
i—0 te[0,T+46]
<Ta+4ré sup |z(t)]. (6.14)
t€[0,7+4]

Inserting (6.14) in (6.13), we deduce that the second term of the right-hand
side of (6.11) is bounded by

/ lg (x —g(z(9))|ds < CyTa+4Cyré sup |z (t)].
te[0,T+4]
As « and ¢ are arbitrary small, and r only depends on «, we conclude that
the second term of the right-hand side of (6.11) converges to 0 uniformly in
t on [0,T7.
Collecting this result with the limit (6.12) on the first term and (6.11),
we deduce that

Jim - sup |® (z,) (t) = @ (z) ()] =0
te[0,T)

This concludes the proof of Lemma 6.2.5. U
Remark 6.2.6. If the function g is not continuous, then ® is not continuous.
Consider indeed a sequence (xn)nen of real numbers that converges from

above to x, a discontinuity point of g. Denoting ® (xy,) the image by ® of
the constant function equal to x,,, we see that, for any t,

O (24) (1) = @ () (t) — t(g(z4) —g(2)) # 0.
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We conclude these intermediate results with the following proposition,
that will be useful to study the limit when ¢ — 0 of the second term in the
right-hand side of (6.8).

Proposition 6.2.7. Let f be given by (6.9). Under the hypothesis of Theo-
rem 6.2.3, we have, for anyt > 0,

E

(/Otf(Yj)ds>2] —0 ase—0. (6.15)

Proof. Since F is a finite set, we identify functions ¢ : £ — R with the vec-
tors ((p(2,0))enr s ((2,1))c0s) € R*™ throughout the proof. We likewise
identify operators with matrices.

Let . be the generator corresponding to the intensity matrix @0:

% (z,2) = Z Q (w,x') (u (x’,z) — u(x,z)) .

First, we claim that
there exists a function u : E > R such that L u = f. (6.16)

Indeed, as @ is irreducible, the only vectors p € R?™ such that MTEO =0
are the vectors of the form p, g = (o, f7) for any o, 8 € R (this is a simple
consequence of the Perron-Frobenius theorem). Using (6.9) and (6.3), we
compute

phef = D am(z) f(x,0)+ > pr(2)f(x,1)

= (a—p) (Z m(x) Y C(z,2) —A)
xeM xz'eM
= 0. (6.17)

—0\ *\ L .
We thus see that f € (Ker <LO> > =Im (LO), from which we deduce the
claim (6.16).

Second, using (6.16), we write that
t t_,
[rwsas = [ Tuias
0 0

¢ ¢
— g/ Lou (YF) — e/ L (YE) ds (6.18)
0 0
where we have used the decomposition
elfu =L u+elCu
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with

L (z,2) = Z C(z,2") (u(2/,1-2) —u(z,2).

z'eM

We successively bound the two terms of the right-hand side of (6.18). Intro-
t
duce N} = u (YY) —u (Yy) — / Lfu (YS)ds. In view of Proposition 6.A.1,

we know that N} is a martingale of quadratic variation given by
t
V= [ (R () - 20 %) Lu(Y?)) ds
0

For any v: E — R, we have

IZ%0lloo < 2ml[vlloc (671 1Qlloe + 1Clloo) -

Therefore,

E[(VE)] = E(N))
< 2mt [[[6?[loo (67 HQlloo + 1Cloo) + 2llulle (6™ Qlloo + IC]loo)]
< A+4¢ !B,

where A and B are positive constants independent of e. It follows that the
first term of the right hand side of (6.18) satisfies

E [<e /Ot Léu (Yj))

2

E (e (N} = u (YF) + u (Y))’]

IN

2% (E | (N2)?] + 4llu?oo)
< 2% (A +e'B). (6.19)

For the second term of the right hand side of (6.18), we directly obtain

)

Collecting (6.18), (6.19) and (6.20), we obtain the desired result (6.15). This
concludes the proof of Proposition 6.2.7. U

E <% (4m||C| % lull) - (6.20)

6.2.2.2 Proof of Theorem 6.2.3 (symmetric case)

All the convergences in this proof are taken when e goes to 0. We will omit
to recall it. The proof consists of four steps.

Step 1: the family of probability measures (P°).., is relatively
compact
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We use the tightness criterion of Theorem 6.A.5, and check that its con-
ditions (6.47) and (6.48) are satisfied.

As the variables Z; take only two values, 0 and 1, the condition (6.47) is
trivially satisfied with the choices K = 1 and ng = 1.

Let us now show that the condition (6.48) is satisfied. Let N € N, a > 0,
0 >0 and e > 0. Let S and T be two F¢-stopping times such that S < T <

S+60 < N. Recall that a random variable T : <Q, (}})120) — RTU{co} isa

stopping time if, for any ¢ > 0, the set {T" < t} is Fi-measurable. Using (6.5),
we have

T
|25 — 75| < /S 3 O(XZ5y) (1 —225)ds| + [Mf — M§|.  (6.21)
yeM

The first term of the right-hand side of (6.21) is bounded as follows:

T
/ Y C(X5y) (1225 ds| < |T — S| ml|Cl < 6m|Clo.  (6.22)
s yeM

To bound the second term of the right-hand side of (6.21), we use the
Tchebytchev inequality:

2
< ElMz — Mgl

P(|M7 — Mg| > «) (6.23)

a2

We denote by ]\Aft6 = My, g— Mg and JEf = Fi,g- As Sis abounded stopping
time, we infer from the optional stopping theorem (see e.g. [135, Theorem
3.2]) that M® is a F°-martingale, of quadratic variation

(M), = (M?)s40 = (MF)s.
In particular, we have
(M#)75 = (M®)7 — (M°)s.
It follows that
E[|Mf— M5 = E|[[Mf_sf]

- E :<M€>T_S]

= E[(M%)r — (M°)s]

r rpT
- E_/S g(XS)ds—ir)\(T—S)}
< O(llglls + ), (6.24)
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where we have used (6.6) and where g is defined by (6.7). We then infer
from (6.23) that

0 (llglle + )

P(|MF - Mg| 2 ) < — 1022

. (6.25)
We deduce from (6.21), (6.22) and (6.25) that the condition (6.48) of Theo-
rem 6.A.5 below is satisfied.

Assumptions (6.47) and (6.48) being satisfied, we can apply Theorem 6.A.5,
which implies that the family of probability measures (P¢). is tight. In view
of Prohorov’s theorem (see e.g. [45, Theorem 2.2|), this implies that the
family (P°).. is relatively compact.

There thus exists a sub-family of (P¢)_, that we denote <735/> K which is

&
convergent. Otherwise stated, there exists a process Z such that Z¢" = Z.

Step 2: there exists a martingale M; and a sub-family Mfl such
that Mg = M,

In view of [77, Theorem VI.4.13|, a sufficient criterion for (M¢) to be
relatively compact is that ((M¢)) is C-tight. Let us check this criterion. We
have shown above (see (6.6)) that

t
<M%:/gu®@+m
0

where g is defined by (6.7). Therefore, the family of paths ((M*®))_. is uni-
formly Lipschitz, and hence C-tight (see |77, Definition VI1.3.25 and Propo-
sition VI.3.26]). We can thus consider a sub-family of (My),,, that we

denote (Mf,> o0’ which weakly converges to a process M. Using |77, Propo-
t

sition 1X.1.1], we know that the process (M;);>¢ is a martingale with respect
to its natural filtration.

Step 3: equation satisfied by 7

We have shown at the end of Step 1 that there exists a process Z and a
sub-family Z¢ such that Z¢' = Z. We now identify a stochastic differential
equation satisfied by (Z;)i>0.

Recall first that (Z7);>0 satisfies (6.8), namely

t t
78 = Zo + / FYE)ds + / A(1—275)ds + ME. (6.26)
0 0
Passing to the limit ¢’ — 0, let us show that (Z;);>( satisfies

t
0
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We first consider B = / t f(Ys)ds. With the same techniques as above,
we can show that (BY) is a relatively compact family. There thus exists (By)
and a sub-family <Bf,) such that B = B. We infer from Proposition 6.2.7
that, for all ¢ > 0, Bf converges to 0 in L*((2), hence E [B?] = 0 for all

t > 0. It follows that the family (Bf) converges to 0 in distribution.

t t
We next turn to J; = / A(1—2Z%)ds. Introduce J; = / A1 —2Zy)ds.

0 0
The function g : z — X\ (1 — 2z) is Lipschitz on R, thus, using Lemma 6.2.5,
we know that the function

P : DR[OOO) — DROOO)

- ([ro-we),

is continuous. The convergence Z° = Z therefore implies that
J =0(z7) = o(Z) =J.

We have thus obtained that all the terms in (6.26) weakly converge. It
remains to show that we can add up the weak limits. To do so, we show
with the same techniques as before that the family (B¢, J¢, M¢) is relatively
compact, and that the limit of any sub-family has as marginal distributions
those of B, J and M. We conclude that B + J¢' + M = B+ J + M.
Passing to the limit & — 0 in (6.26), we then indeed obtain (6.27).

Step 4: conclusion

We infer from (6.27) (where, we recall, M; is a martingale) and Lemma 6.2.4
(with Ag = A1 = A) that (Z;),~ is a Markov jump process of initial condition
Zo and of intensity matrix given

(0)

The process Z is thus uniquely defined.

It follows that all convergent sub-families Z¢ have the same limit Z.
The whole sequence Z¢ therefore converges to this common limit Z. This
concludes the proof of Theorem 6.2.3 in the symmetric case.

6.2.2.3 Non-symmetric case

In this Section, we briefly sketch the proof in the non-symmetric case, that is
when Qo # Q1 or Cy1 # Cio in (6.1). The structure of the proof is similar
to that in the symmetric case.
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First, the generator associated to the process (Y;) reads

Lfp(x,2) = Z e1Q, (x,x') ((p (x',z) — cp(x,z))

r’'eM

+ Z Cri—z (w,x') (cp (w', 1— z) - cp(x,z)) )

x'eM
Choosing the function ¢ (z,2) = z, we see that
€ _ / _
Lip(z,2) = Y Cons (z,2") (1-22) = f(z,2) + h(2),
x'eM

where we have introduced (recall (6.3))

flz,2)= ( Z Conz (z,2") — )\Z> (1-22)

z’'eM

and

hz)=(1-22)A =(1-22) > Coy(z,2")m.(2).

z,x’'eM

Using again Proposition 6.A.1, we see that the process

M = oY) - (YE) - /0 LFp(YE) ds (6.28)

is a martingale. Using the above notation, the equation (6.28) can be recast
as

t t
Z5 = Zy +/ fYs)ds +/ h(Z%)ds + M;. (6.29)
0 0
To pass to the limit ¢ — 0 in the above equation, we follow the same lines
as in the proof detailed in Sections 6.2.2.1 and 6.2.2.2.

Consider the second term of the right-hand side of (6.29). As in the proof
of Proposition 6.2.7, we can show that p” f = 0 for any x € R?*™ such that
MTEO = 0, which are vectors of the form (amg,Sm) for any o and § in R.

t
This implies that / f(YE)ds converges to 0 in L% (Q2) for any ¢ > 0.
0

We turn now to the third term of the right-hand side of (6.29). Let h
be the affine function defined on R by h(0) = h(0) and h(1) = h(1). The
function h is obviously Lipschitz on R, hence, using Lemma 6.2.5, we know
that the function

®: Drl0,00) — Dgr[0,00)

: o (/Otz(z(s))ds>t
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t t
is continuous. Since / h(Z:)ds = / h(Z%)ds, this allows to pass to the
0 0
limit in that term.

As in Section 6.2.2.2 (Step 3 of the proof), we can thus pass to the limit
e — 0 in (6.29), and show that Z¢ converges in distribution to a process Z,
that satisfies

t
Zt = Z0—|—/ h(ZS)dS+Mt
0
t
= Z0—|—/ [)\Q—Zs()\o—{—)\l)]ds—{—Mt,
0

where M is a martingale. We then infer from Lemma 6.2.4 that (Z;),- is a
jump process on {0, 1}, of initial condition Zy and of intensity matrix

0 Xo
A0 )7

6.2.3 Numerical illustration

as claimed in Theorem 6.2.3.

We have implemented the model presented in Section 6.2.1. As shown on
Fig. 6.1, the energy wells can be gathered in two macro-states (each of them
containing m micro-states) separated by a high potential energy barrier. The
transitions are only possible from one well to its two nearest neighbours. In
addition, we apply periodic boundary conditions. The matrices Qo, @1, Co 1
and C of the intensity matrix (6.1) read

Qo=0Q1=0Q and Co1=Cip=C

with
0 g 0 0 ¢
q q 0 0
Q: ’ C:
qg 0 ¢
g 0 c 0 0

We work with ¢ =c¢=1.

We are interested in the distribution of the first exit time S§ from a
macro-state. From Theorem 6.2.3, we know that, in the limit £ going to
0, S§ follows an exponential distribution of parameter A = 2¢/m (indepen-
dently of what the initial condition of the system is). In order to quantify
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the convergence of the distribution of Sj to the predicted distribution, we
consider the L' norm of the difference of the densities:

e = [ 15 = £ % 1 301 i80) — £, (6.30)
i=1

where f(x) = X\e™* is the limit distribution and f¢ is the distribution of
S§. This latter distribution is calculated on the bounded interval [0, s] with
1
s =nAx on a grid of size Ax: fi =~ Az Z fe(z) for any i € [1,n].
z€liAx,(i+1)Ax]
In the sequel, we work with Ax = 0.05 and s = nAxz = 5.

Remark 6.2.8. Other criteria can also be considered to characterize the
convergence of the probability distribution f€ towards f. One example is
the discrepancy, which is the difference (in L> norm) of the cumulative

distribution functions:
A A
Lohr
0 0

We have used this criterion e.g. on Fig. 6.5 below.

D = sup . (6.31)

A>0

We first consider how results depend on €. We work with a fixed initial
condition, namely Yy = (0,0). At the initial time, the particle is in the first
macro-state, and in the micro-state which is the closest to the energy barrier
between the two macro-states (see Fig. 6.1).

On Figs. 6.2 and 6.3, we show the convergence of the empirical expec-
tation and variance of S§ to the asymptotic value (we have considered 10%
independent and identically distributed realizations of the process to com-
pute 95 % confidence intervals). We indeed observe convergence of both
quantities to their asymptotic limits when ¢ — 0.

On Fig. 6.4, we show the histogram of S§ in the case m = 20 for two
values of £. We again observe a good qualitative agreement with the limit
distribution for small enough . This can be quantified by looking precisely
at the convergence of the distribution of S§ to the asymptotic distribution
when e goes to 0, for different values of m (see Fig. 6.5). The left part of
that figure seems to show that the convergence slows down when the number
m of micro-states within a macro-state increases.

We next monitor how the distribution of S§ behaves when we vary the
initial condition. For this test, we work with m = 5. Figures 6.6 and 6.7
show the empirical expectation and variance for different initial positions
and for different values of . We notice that, for an initial condition which is
at the middle of the macro-state, the convergence with respect to ¢ is slower
than for the initial conditions which are at the boundaries of a macro-state.
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Figure 6.2: Empirical expectation of S§ as a function of ¢, for m = 3 (left),
m = 5 (middle) and m = 7 (right). The asymptotic values (when ¢ — 0)
are also represented (solid lines).

This difference is due to the diffusion phenomenon which occurs inside each
macro-state as a result of the transition to the nearest neighbors.

To better understand the behavior of the system for large values of m,
we have simulated our model with m = 20. We show on Figs. 6.8 and
6.9 the empirical expectation and variance of S§ for two different initial
conditions, one on the boundary (Y = (0,0)) and the other in the middle
of the macro-state (Yp = (10,1)). On Fig. 6.10, we show the convergence of
the distribution of Sj to its limit for these two initial conditions.

We clearly see that the convergence is slower and the error margins are
larger (for the same number of Monte-Carlo realizations) than when we chose
smaller values of m (compare for example Fig. 6.8 with Fig. 6.2 or Fig. 6.10
with Fig. 6.5). The system indeed takes more time in a given macro-state
before reaching its boundary and possibly jumping.

To conclude this numerical illustration, we have monitored the distribu-
tion of S7, the exit time from the second macro state, and compared it with
that of S§, the exit time from the first macro-state. We observe (results not
shown) that S§ has the same asymptotic behaviour as S§, a fact which is in
agreement with the theoretical predictions.

Remark 6.2.9. The parameters of the numerical simulations reported here
have been chosen so that the limit dynamics (at ¢ = 0) is an inaccurate
approximation of the reference dynamics when € is large (say e > 1).

There are actually cases when the limit dynamics is an accurate approx-
imation of the reference dynamics, even if € is not small. For example,
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Figure 6.4: Distribution of S§, the first exit time from a macro-state (m =
20). Left: large ¢ = 1. Right: small ¢ = 1073,

consider the case where, for a given macro-state (say Z = 0), the transitions
from each micro-state of this macro-state to any micro-state of the other
macro-state (Z = 1) share the same frequency. In the case of the symmetric
model considered in Section 6.2.2, the homogeneity condition means that

Z C (x,x') = Cte independent of x.
z'eM

In this case, the macroscopic dynamic is decoupled from the microscopic
variable, as can be seen from (6.5), and of course does not depend on ¢.
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Figure 6.5: L' error (6.30) (left) and discrepancy (6.31) (right) on the dis-
tribution of S§ as a function of e.

6.3 A particle in a potential energy landscape with
infinitely many macro-states

In Section 6.2, we have studied the dynamics of a particle in a potential
energy with two macro-states. We now turn to the system composed of a
particle in a potential energy with infinitely many macro-states. We estab-
lish a convergence result on the dynamics of a slow quantity of interest in
Section 6.3.1, before turning to numerical illustrations in Section 6.3.2.

6.3.1 Presentation of the model and main result

As mentioned above, we consider here the dynamics of a particle in a po-
tential energy with infinitely many macro-states. As in Section 6.2.1, the
state of the particle is described by Y = (X7, Z5), which takes its values
in M x Z, where again X; € M = {1,...,m} is the label of the micro-state
in which the particle is. The variable Z is the label of the macro-state in
which the particle is at time ¢, and it now takes any value of Z.

For simplicity, we assume that the dynamics within each macro-state is
similar. We also restrict the transitions from one macro-state to its two
neighbors. The transition from z to z + 1 may have different properties
than the transition from z to z — 1 (thus creating a macroscopic drift in the
dynamics). We also assume that the system is macroscopically homogeneous,
in the sense that properties are translation invariant with respect to z. Under
these assumptions, a typical transition intensity for the process (Y_f) . is given
by

Vz € Z, @E ((:U,z),(x',z)) = Q(:C,:C/),
VzeZ, Q ((z,2),(x,24+1)) = &C,(x,2), (6.32)
Vz € Z, @8 ((.%', Z) ) (1'/, z—1)) = eC (1‘,1") ) .
VzeZ, Q ((z,2),(2,2)) = 0if2 #z z+1orz—1.
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Figure 6.7: Empirical variance of S for different initial conditions and differ-
ent values of ¢, with the same convention as on Fig. 6.6 (results for e = 10?
do not fit in the chosen y-range).

274



20

—
i
H

H
H

10 T

1000 100 10 1 01 001 0.001 1000 100 10 1 01 0.01 0001

Figure 6.8: Empirical expectation of S5 for m = 20, as a function of ¢, for
two different initial conditions: Yy = (0,0) (left) and Yy = (10,1) (right).
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Figure 6.9: Empirical variance of S§ for m = 20, as a function of €, for two
different initial conditions: Yy = (0,0) (left) and Yy = (10,1) (right).
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Figure 6.10: L' error (6.30) on the distribution of S§ for m = 20. Left:
initial condition Yy = (0,0). Right: initial condition Yy = (10, 1).

We again assume that the matrix @ is irreducible (see (6.2)) and intro-
duce its unique invariant measure w. The average of the jump frequency
according to the invariant measure reads

A= Z Cr(z,a)m(x), N\ = Z Cr (z,2") 7 (x). (6.33)

x,x' €M z,x' €M

We introduce the generator L defined by: for any bounded function ¢ on Z,
Lo(z) = Mp(z = 1) + Arp(z + 1) = (A + X1) @(2), (6.34)

which is the generator of a jump process (Z;)¢>0 on Z, with jumps at times
defined by a Poisson process of parameter \;+A,.. When the process jumps, it

jumps to the right (resp. to the left) with probability

).

The main result of this section is the following:

(resp.

r l
A+ N A+ N

Theorem 6.3.1. Assume that the matriz Q is irreducible. Consider the
rescaled-in-time process Y = (X7, Z5) = Yi/a with initial condition Yy =
(X0, Zp) independent of . We denote by P the distribution of the pro-
cess (Zf), and by P the distribution of the process starting from the initial
condition Zy and having as generator the operator L defined by (6.34). Then

P = P as e goes to 0.

The proof of this result follows the same steps as that of Theorem 6.2.3,
up to the fact that the process Z¢ is no longer bounded. To circumvent
this difficulty, we need to work with an arbitrary bounded function of Z¢, in
contrast to the proof of Theorem 6.2.3, where it is sufficient to directly work
with Z¢.
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We briefly sketch the proof of Theorem 6.3.1. The generator L° of Yy
reads, for a bounded function ¢,

Lép(z,2) = Z 6_1Q (m,x') (gp (x', z) — ¢ (x, z))
z'eM

+ Z Ci(z,2") (¢ (2,2 = 1) — ¢ (z,2))

z'eM

+ Z Cr(z,2') (¢ (2,24 1) —p(z,2)).

r'eM

For a function ¢ (z,z) = F(z) which only depends on the macroscopic vari-
able (where F' is a bounded function on Z), we have

(L°F) (z,2) = Y Ci(,2") (F(z—1) = F(2))
z'eM

+ ) Co(w,2!) (F(z+1) = F(2)).

r'eM

Using Proposition 6.A.1, we know that the process
M= P(Z) - F () - [(R (G2 s (6
is a Fi-martingale. We now introduce
G(F)(z,2)=(F(z=1) = F(2)) >_ (Ci (z,2') = )

z'eM
+H(F(z+1)=F(2) > (Cr(z,2') = A\), (6.36)

z'eM
so that
(L°F) (z,2) = G(F) (z,z) + LF(2)

where L is defined by (6.34). We then recast (6.35) as
¢ t
F(Z;) =F(Zy) +/ G(F)(Ys)ds +/ LF (Z)ds + M;. (6.37)
0 0

We are now left with passing to the limit € — 0 in (6.37).

Consider first the second term of the right-hand side of (6.37). We have
the following result (compare with Proposition 6.2.7):

Proposition 6.3.2. For any bounded function F' defined on Z and anyt > 0,
under the assumptions of Theorem 6.3.1, we have

E

2
</tG(F)(Ys€) ds> ] — 0 ase—0,
0
where G(F) is defined by (6.36).
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Proof. The proof follows the same steps as that of Proposition 6.2.7. Fix
z € 7Z and consider the function x € M — G,(x) = G(F)(x,z), that we
identify with a vector in R™, denoted G,. Using (6.33), we observe that
7T'G, = 0. We then deduce that, for any y € R™ such that 37 (Q — A) =0
(where A has been defined in Remark 6.2.2), we have y’ G, = 0. Thus G, €
(Ker(Q — A)*)" = Im(Q — A) and that there exists u, € R™ such that (Q —
A)u, = G,. Introducing the function u(z,z) = u,(x), we easily check that
Ll = G(F'). The rest of the proof is identical to that of Proposition 6.2.7.

U

For the other terms of (6.37), the proof follows exactly the same steps as
in the proof of Theorem 6.2.3. We hence obtain that the weak limit Z of (Z¢)
satisfies that, for every bounded function F' on Z, there exists a martingale
MY¥ such that

t
F(Z) = F(Zo) +/ LF (Zs)ds + MF. (6.38)
0
Using Lemma 6.A.2, we conclude that Z is a jump process of generator L
defined by (6.34).

Remark 6.3.3. We refer to Appendix 6.B for the study of the limit process
introduced in Theorem 6.3.1, after a rescaling both in time and space. We
show there that it converges to a Brownian motion (up to a multiplicative
constant).

6.3.2 Numerical illustration

We have simulated the model described in Section 6.3.1, with the choices

0 ¢
qg 0 ¢
Q= ‘ ;
q 0 ¢
q O
0 0 ¢ 0 00
0 --- 0 0 0
C = . i and C, =
o o0 --. 0 ¢ 0 - 0

with ¢ = 1, ¢, = 2, ¢ = 1, m = 5 and the initial condition Yy = (0,0)
(similar results are obtained for other initial conditions). The parameters \,
and )\; of the macroscopic evolution are

1
=22 oad N =22
5 m 5
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We first monitor the convergence of the distribution of S§, the exit time
from the first well. On Fig. 6.11, we show its empirical expectation and
variance. We see that they converge to their asymptotic values as € goes
to zero. This convergence is confirmed by the histogram representation (on
Fig. 6.12), where we see a good agreement between the discrete curve and
the asymptotic curve for sufficiently small values of €. Likewise, the L! error,
also shown on Fig. 6.12, indeed converges to zero.

. . . . . . . . . 0 . . . . . . . . .
1000 100 10 1 01 001 0001 00001 105 1000 100 10 1 01 001 0001 00001 105
epsilon epsilon

Figure 6.11: Empirical expectation (left) and variance (right) of Sj as a
function of €.

Figure 6.12: Left and Center: Distribution of S§, the first exit time from
a macro-state (Left: large ¢ = 1. Center: small ¢ = 1073). Right: L!
error (6.30) on the distribution of S§, as a function of e.

We next study the distribution of the amplitude of the first jump of the
macroscopic variable Z¢, that is the distribution of the random variable

AZF = Z§: — Z.

On Fig. 6.13, we show the empirical expectation and variance of AZ¢, which
are observed to converge to their asymptotic values. Note that the limiting
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process Z, the generator of which is the operator (6.34), drifts to the right,
since A, > A;. We compute that

E(AZ)=P(AZ=1)x 1+P(AZ = —1) x (_1):%_$:%,

and we indeed see on Fig. 6.13 that liH(l)IE(AZE) =E(AZ). On Fig. 6.14,
e—
we show the empirical distribution of AZ¢ for a small €, and we observe that
2 1
PAZF=1)=P(AZ=1) = 3 PAZF=-1)=P(AZ=-1) = 3

We also check on Fig. 6.14 that the L' error between the distribution of AZ¢
and that of AZ goes to 0 as € goes to zero.
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epsilon epsilon

Figure 6.13: Empirical expectation (left) and variance (right) of AZ® as a
function of €.

Figure 6.14: Left: Empirical estimation of the probabilities P (AZ® = —1)
and P (AZ¢ = 1) for ¢ = 107°. Right: L! error (6.30) on the distribution of
AZ* as a function of .
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6.4 Exchange of energy in a system of two particles

In this final section, we consider a more elaborate model. This model is
composed of two particles. The state of the first (resp. second) particle
is described by the vector X (resp. Z) with k components. An energy
functional & is associated to each particle. The system evolves either due to
the internal evolution within a particle, or due to the interaction between
the two particles. In the first case, the energy of each particle is preserved.
In the second case, the internal energy of each particle varies, but the total
energy of the system, £(X) + £(Z), is preserved. Interactions between the
particles occur on a much slower time scale than the internal evolution of
each particle. One must hence wait for a long time before observing any
change in each particle energy.

The model is presented in details in Section 6.4.1. In Section 6.4.2, we
establish a convergence result on the time evolution of the energy of the first
particle, which is our macroscopic variable of interest. We only give there a
sketch of the proof as it follows the same arguments as before.

One of the interesting features of this model is that the macroscopic
variable of interest is not one cartesian coordinate of the system. We show
that the arguments used in Sections 6.2 and 6.3 carry over to this more
general case.

6.4.1 Presentation of the model

We consider a model with two particles. Each particle contains k spin-like
variables, that can take the value 0 (spin down) or 1 (spin up). At time ¢, the
state of the system is given by 7; = (7;,7;) € M x M, where M = {0,1}F
is the space for the k spins of each particle. For each particle, we are given
an energy functional £ (z) = & (x1,...,2) (with z; € {0,1}, 1 < j < k)
that depends on the state of the k spins of the particle. One choice is to set
E(x) = x1+ -+, which would correspond (up to a multiplicative factor)
to the energy of k spins in a uniform magnetic field.
The intensity matrix of the process Y~ is built as follows:

e the internal dynamic of each particle is governed by an intensity matrix
@ that conserves its energy, i.e. Q(x,2') = 0 if £ (x) # £ (2'). We
define the global internal dynamic intensity matrix @0 by

Q ((x,2),(,2) = Q(x,2) ifz#a

@0 (z,7')) = Q(z2) ifz# 2,

@0 ((z,2),(2',7")) = 0 ifz#2" and z # 2.

(2,2)
(2,2)
e the coupling between the two particles is described by a matrix C'. This

coupling introduces an exchange of energy between the two particles,
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while keeping the total energy constant. We assume that C is such
that

C((z,2),(2,2) =0 E(x) +E(2) ZE@)+E(Z) orif € () = E ().
e the transition intensities of the process Y are given by
Q=" +<C
We make the following assumption:
the matrix @ is such that, for every admissible energy level e,
the state class of energy e is irreducible (6.39)
and thus admits a unique invariant probability measure 7°.
We denote by 7€ the probability measure on M defined by 7€ (x) = 7€ (x)
if £ (z) = e and 7° (z) = 0 otherwise. Any normalized linear combination of
the measures 7¢ (with non-negative coefficients) is thus an invariant prob-
ability measure of ). We consider the state classes of M x M such that
the energy of each particle stays constant. These classes are irreducible and
admit a unique invariant probability measure 7¢ ® 7¢. The invariant prob-

ability measures of Q) are of the form (z)~1 doew Z (e, )@ 7¢ | where
Z (e,€') > 0 are some coefficients and where Z’ is a normalization constant.

6.4.2 Main result

As pointed out above, our quantity of interest is & (7;), the energy of the
first particle. In view of the chosen scaling in Q°, the characteristic time
scale of evolution of this energy is of the order of e~'. We thus need to
rescale in time the evolution, and therefore introduce Y¢ = (X5, Z5) := ?i/a

and & = & (Y,f/e).
We now identify the limit of the process &£, and state the main conver-
gence result of that section, namely Theorem 6.4.1 below. Let L® be the gen-

erator of (Yf);>0, which is a jump process of intensity matrix Q° = e~ 1Q".
We have

Lép(z,2) = Z Q* ((3:, z), (x', z')) [ (:c', z') — ¢ (z,2)].
z!'z'eM
For a function ¢ (x,z) = F (z) that only depends on the state of the first
particle, we have

(L°F) (z,2) = Y @ ((z2), (7)) [F(a) = F(x)]

x 2'eM
= ¢! Z Q (z,a") [F(2') — F (x)]
x'eM
+ Z C((z,2),(a,2))[F (2') = F ()]
x 2'eM
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Now choosing F' = £, we obtain

l(x,2):=(L°E) (z,2) = Z C ((m,z) ) (CCI,Z/)) € (:c') — & (x)]

since Q (z,2') = 0 if £ (2') # € (x). We suppose that, at the initial time, the
energy of each particle is independent of e: £(X§) = E, and € (Z§) = E.,
where F, and FE, are independent of €. The total initial energy is denoted
E=FE,+E..

Using Proposition 6.A.1, we see that there exists a martingale My such
that

t
& =E, +/ 1(XE, Z5) ds + ME. (6.40)
0

As in Section 6.2.2, we can show that there exists a process £ such that
E¢ converges to £, up to extraction. We now identify the distribution of
the process £ and show that it is independent of the chosen sub-sequence
(thereby proving that all the sequence £° converges to £, and not only a
subsequence).

We introduce the average of the drift in (6.40) with respect to an invariant

—0
measure of () :

7(61, er) = Z Iz, 2)m (2)7(2)

z s.t. E(x)=eq
z s.t. E(z)=eg

= Z ()7 (2) Z C((z,2),(2,2)) [€(2)) — ()]

z s.t. E(z)=eq z!z'eM
z s.t. E(z)=eg

= Z T ()T (2) Z C((z,2),(2,2)) [€(a') —ei].
z s.t. E(z)=eq 2,2/ s.t.

z s.t. E(z)=eg g( ) ( ) e1+eg

We further define

f (.%',Z) = l(xvz) —7(5(1')75(2))

and

gle)=1(e,E—e), (6.41)
and recast (6.40) as

t
& =E; +/ f(X5,Z5)ds +/ (&) ds + M;. (6.42)
We now want to pass to the limit € — 0 in (6.42).

Consider the second term in the right-hand side of(6.42). By construc-
tion, f is the difference between the function [ and its average I. The average
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of f is thus expected to vanish. This is indeed the case: for any two energies
e1 and eo, we compute

(rr@r)’ f = Y m @) () f(x,2)

z s.t. E(x)=eq
z s.t. E(z)=eg

= Z () (2)l(z, 2) — Z 7w (z)m (2)l(e1, e2)

z s.t. E(z)=eq z s.t. E(z)=eq
z s.t. E(z)=eg z s.t. E(z)=eg

= Z 7 (2)72 (2)l(z, 2) — I(e1, €2)

z s.t. E(z)=eq
z s.t. E(z)=eg

= 0.

Therefore, for any p such that MTEO =0, we have u”f = 0. Following the

arguments of Proposition 6.2.7, we deduce that, for any ¢, the random vari-
t

able / f(XZ,Z5) ds converges to 0 in L?(12), and that the random process
also weakly converges to 0.

We now turn to the third term of the right-hand side of (6.42), and claim
that (up to the extraction of a sub-sequence)

/g(5§)d5 = /g(gs)ds, (6.43)
0 0

where & is such that £ = &;. The function g is defined on the set £ (M)
of the admissible energies, which is a finite set (we recall that M = {0, 1}¥).
We denote by g the P1 interpolation of g on R, which is a piecewise linear
function defined on R and that coincides with g on € (M). The function g
being Lipschitz on R, we infer from Lemma 6.2.5 that the function @ : z —

i

( / g (xs) ds) is continuous. Therefore, the convergence £ = &, implies
0 t

that

([aen)=([an) comenses o ([ae0) = ([ o).

We thus have proved (6.43).

We next turn to the last term in the right-hand side of (6.42). As in the
previous sections, we can show that M¢ weakly converges (up to extraction)
to some martingale M.

We can now pass to the limit € — 0 in (6.42), and obtain that the limit
process & satisfies

t
0
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It is now easy to recast the above equation in a more useful form. In view
of (6.41), we indeed note that

g(e) = Z Z Z ()7t 4(2) O ((z,2), (2, Z')) (¢'—e).

z s.t. E(x)=e 2/ s.t. S(Il):el

z s.t. E(z)=E—e 2! s.t. S(z’):Efe’

BE(E,EI)

Therefore, the equation (6.44) reads

t
St:Em+/ S By (€.,¢) (¢ — &) ds + M,
0 o

where, we recall, I is the total energy of the system, which is preserved
along the dynamics.

We conclude this formal approach by pointing out that the above equa-
tion actually does not allow to identify the law of the process (&);. In the
proof of Theorem 6.2.3 (see Section 6.2.2), we performed that step of the
proof by using Lemma 6.2.4, which is not possible in our context here. To
identify the law of the process (&;);, we resort to Lemma 6.A.2. Consider a
bounded function ¢ on &£ (M), and the martingale

ME< = (&) — ¢ (E,) — /0 Y Br(&.¢) (v (¢) — v (&) ds.

Following the same steps as above, we show that each term converges when ¢
goes to zero. In particular, M;” converges to a martingale M¥ that satisfies

¢
MF = (&) = ¢ (B~ [ 3B (Ead) (o (¢) — o (E)) ds
Lemma 6.A.2 then implies that £ is a jump process of intensity matrix B =
BE (e, 6/).
We thus have the following result:

Theorem 6.4.1. We denote by P the distribution of the process (E¢), where
we assumed that the initial condition (E,, E,) is independent of €. We de-
note by P the distribution of the jump process of initial condition E, and of
intensity matric B = Bg (e, €'), with E = E, + E,. Under the assumptions
on the matrices Q and C described in Section 6.4.1, we have

P =P ase — 0.
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6.4.3 Numerical illustration

We have numerically simulated the system described above, when each par-
ticle has two spins, i.e. k = 2. In this case, Card(M) = 4, and the admissible
states for each particle are labelled as 1: ||, 2: 1}, 3: |17 and 4: 1. The
energy of each particle is the sum of the energies of its two spins, which are
equal to 0 (spin down, |) or 1 (spin up, 1). The matrix @ that governs the
internal dynamic of each particle is of the form

0O O 0 0
10— @ O
@= 0 ¢ —q O
0O O 0 0

This matrix preserves the energy of the particle as it only allows transitions
between states of the same energy (namely, 1] and |1). We work with
g1 =10 and g2 = 1.

There are five possible initial energies for the complete system:

e I/ =0 (both particles are initially in the state 1: |]). The system then
does not evolve, as only one state corresponds to that total energy.
The case when E = 4 is similar.

e I = 1: initially, one particle is in the state 1: ||, while the other
particle is in the state 2: 1| or 3: |T. We consider this case below.
Note that the case when E = 3 is similar.

e F = 2: without loss of generality, we may assume that the initial state
of each particle is 2: 1.

In what follows, we only consider the case £ = 1. We have checked that
results obtained in the case E = 2 lead to the same qualitative conclusions.

As mentioned above, we assume that the initial state of the first particle
is 2: 1 (corresponding to the energy E, = 1), and that the initial state of
the second particle is 1: || (corresponding to the energy E, = 0).

The matrix C' (which encodes how the two particles interact) is chosen
of the form

C((2,2),(2,7)) = cif€(x)+&(z)=E@)+E(Y)and E(x) # € (o),
C((z,2),(2,7)) = cifz#2and E(x)+E(2) =& (2) + € (Z) and E(z) # € (2),
C((z,2),(2,2")) = 0 otherwise.

We work with ¢; =1 and ¢ = 0.2.

We monitor the distribution of S, the first waiting time before an ex-
change of energy between the two particles occurs. Figures 6.15 and 6.16
show the convergence of the distribution of S§ to the asymptotic distribu-
tion, which is an exponential distribution of parameter B (1,0) = 6/11.
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Figure 6.15: Empirical expectation (left) and variance (right) of S§ as a
function of €.

Figure 6.16: Left: Distribution of the first waiting time S5 before the energy
of the first particle changes (¢ = 1073); Right: L' error (6.30) between the
distribution of S5 and its limit distribution.

6.A Some useful results

For convenience, we recall in this Appendix some classical results of proba-
bility theory that are needed in this study.

Martingales Several results on martingales are useful in this work. The
first one is an existence and uniqueness result for the martingale problem
introduced by D.W. Stroock and S.R.S. Varadhan (see e.g. [9] and [150]):

Proposition 6.A.1 (Lemma 5.1 of Appendix 1 of [79]). Let (Xt),5q be a
Markov process and let (ft)tzo be its natural filtration. For any bounded
function F, we introduce
t
M = F(X;) — F(Xo) —/ LF (X,)ds
0

and
NP = (MtF)Q — / (LF?(X,) — 2F (X,) LF (X,)) ds,
0

287



where L is the generator of the Markov process (X;). Then M and N are
Fi-martingales. In particular, the quadratic variation of M* reads

(MFy, = /t (LF? (X,) — 2F (X,) LF (X)) ds.
0

We recall that for a continuous local martingale M, the process (M) is
defined to be the unique right-continuous and increasing predictable process
starting at zero such that M? — (M) is a local martingale.

The next result is of paramount importance to prove that a process is a
jump process, and to identify its generator. We state here this result as a
simplified version of [78, Theorem 21.11].

Lemma 6.A.2 (Uniqueness result for the martingale problem). Let F' be a
countable space, Z; a stochastic process valued in F and L an operator on
bounded functions ¢ : F' — R defined by

Lo(x) = Y Lo (p(@) = ¢(2))
el

where Ly, > 0 for any x,2’ € F and SUPy yrep Lzar < 00. If for any
bounded function ¢ : F' — R, the process

t
Mf =0 (2) ~ ¢ (%) - [ Lo(Z.) ds
0
is a martingale w.r.t. the natural filtration of (Zy)i>o, then (Zi)i>q is the
jJump process of initial condition Zy and of generator L.

Finally, Doob’s maximal inequality for martingales (see e.g. [76, Propo-
sition 2.4.1]) gives an upper bound on the probability that a martingale
exceeds a certain value over a given interval of time.

Proposition 6.A.3 (Doob’s maximal inequality). Let (X;)i>0 be a martin-
gale. Then, for any t and a > 0, we have

E(|X
IP’(sup ]XS\>a)§ ( t’)

s€[0,t] a

Convergence of probability measures We now turn to classical results
concerning the convergence of probability measures in Dpg [0, 00), which is
the space of functions that are right continuous with left limits (the so-called
cad-lag functions), defined on [0, c0) and valued in R. Proposition 6.A .4 gives
an equivalent definition of the Skorohod metric on Dg [0, 00) (see [45, p. 116-
118] for the original definition of the Skorohod metric, that we actually do
not use in this work). Theorem 6.A.5 and 6.A.6 state convergence criteria
for probability measures on Dg [0,00). Finally, Theorem 6.A.7 is a standard
application of the weak-convergence theory in Dy [0, c0).
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Proposition 6.A.4 (Proposition 5.3, Chap. 3 of [45]). Let (xy,)n>0 be a se-
quence in D [0,00) and x € Dg [0,00). The following assertions are equiv-
alent:

e lim z, = x in the space Dg [0,00) endowed with the Skorohod metric.
n—o0

o ForanyT > 0, there exists a sequence of strictly increasing, continuous
maps (An)n>0 defined on [0,00) and valued in [0,00) such that

lim sup |\, (t) =t/ =0 (6.45)
n—oo 0<t<T
and
lim sup |z, (t) — 2z (A, (t))]| =0. (6.46)
n—o0 OStST

Theorem 6.A.5 (Aldous’ criterion, Theorem VI.4.5 of [77]). Let (X"),>1
be a sequence of cad-lag processes, with distributions P™. Suppose that

o for any N € N and € > 0, there exists ng € N, ng > 0, and K € RT
such that, for any n > ng,

P (sup | X7 > K) <e. (6.47)
t<N

e for any N € N and o > 0, we have

lim lim sup sup P (| X — Xg| > a) =0, (6.48)
=0 n = STeI, SKT<S+0

where TY; is the set of all F™ stopping times that are bounded by N.
Then the sequence (X" )nen is tight.

Theorem 6.A.6 (Theorem 15.5 of [11]). Let (P™),>1 be a sequence of prob-
ability measures on Dg[0,T]. Suppose that

e for any n > 0, there exists T such that

Vn>1, P"({x € Dr[0,T], |z(0)] >7}) <. (6.49)

o for any e >0 and n > 0, there exists 0 < 6 and ng € N, ng > 0, such
that

Vn > mng, P ({x € Dg[0,T7, ‘:ulzs |z(t) — z(s)| > 6}) <n.
B (6.50)

Then the sequence (P™),~, is tight.
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Theorem 6.A.7 (Donsker’s theorem, Theorem 14.1 of [11]). Consider a se-
quence (Tn)nen of independent and identically distributed random variables,
with mean 0 and variance o®. Introduce

XP(w) = % S (@),

where, for any n € N, S, = > x;. Then X" = B, where B is the
Brownian motion.

6.B Convergence in a diffusive rescaling

In Section 6.3.1, we have shown that the macroscopic variable Z; converges,
when € — 0, to a process Z;, the generator of which is the operator L defined
by (6.34). We now study the limit of this process Z;, after an appropriate
rescaling in time and space. As the problem is translation invariant, we can
assume that Zy = 0 without loss of generality.

We assume from now on that the initial process is symmetric. In (6.32),
we thus take C, = C; = C, so (6.33) now reads

A=A =X\ = Z C(z,a) 7w (z), (6.51)
z,x'eM
and the operator L is defined (see (6.34)) by
VoeCy(Z), Le(z)=Ae(z+1)+e(z—1)—2¢(2)). (6.52)
The main result of this section is the following:

Theorem 6.B.1. Let Z be the process associated to the generator (6.52).
Let B be a Brownian motion. Then

6Zt572 =V 2)\Bt as o — 0
in Dr[0,T] for any T > 0.
The two following results will be useful to prove Theorem 6.B.1.

Lemma 6.B.2. Let Z be a jump process with initial measure &g and intensity
matriz Q gwen by Q; i1 = A1, Qii—1 = X2 and Q; ; = 0 otherwise, for some
M1 and Xa. Then Z has the same distribution as N — N2, where N! and N>
are two independent Poisson processes of intensities \1 and Ao respectively.

Proof. Let N' and N? be two independent Poisson processes of intensities
A1 and A respectively. We introduce Z’ = N' — N2, and we show in what
follows that Z’ and Z have the same distribution.

The process Z' is a jump process, of initial measure dy. Let {S;};~,
denote the durations between two consecutive jumps of Z’, and let A; =
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Z (/Zifl S0+ denote the jump chain. The random variable Sy can be written
k=0"k

So = inf (S§, S3), where S§ and S3 are the first jump times of the processes

Nt and N?. As S} and S3 are distributed according to an exponential

distribution of parameters A1 and A9, the random variable Sy is distributed

according to an exponential distribution of parameter Ay + \o. Besides,

A
P(A1:A0+1):P(50=53):M;AQ

and )
IP’(Aleo—l):]P’(SO:S%):)\lj)\2.

Using a recursive argument and strong Markov property, we show that for
any 7 € N\ {0}, S; and A; — A;_1 have the same laws as Sy and A; — Ay and
are mutually independent. We hence obtain that the distribution of (Z}):>¢
is the same as that of (Z;);>. This concludes the proof. O

Proposition 6.B.3. Let Z be a jump process of intensity matriz QQ given by
Qiiv1 = M, Qii—1 = A2 and Q; ; = 0 otherwise, for some A1 and \o. Then
the increments of Z are stationary and independent.

Proof. In view of Lemma 6.B.2, we know that the process Z has the same
distribution as N' — N2, where N! and N? are two independent Poisson
processes of intensities A1 and Ao. We next use the fact that the increments
of a Poisson process are stationary and independent (see e.g. |75, Chapter
3]) to conclude. O

We present in the following two proofs of Theorem 6.B.1. The first
one is short, and mostly based on Donsker’s theorem [11] (recalled in The-
orem 6.A.7 below). The second one is a detailed proof using elementary
arguments.

Proof of Theorem 6.B.1 based on Donsker’s theorem. Let (&)ren be a se-
quence of i.i.d. variables following the same distribution as Z;. By con-

struction,
E(&) =0 and E(&) =2\

In view of Propostion 6.B.3, the increments of Z are independent and sta-
tionary. Hence, at any time n € N\ {0}

n
Zn=7) Zi~Zix
=1

has the same distribution as & + & + ...+ &,. Using Donsker’s theorem, we
have

\/%_)\ 0 Zjis-21 = Bras 6 — 0,
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where B is a Brownian motion. Hence,
5Z[t572} = V2\ By as 0 — 0. (6.53)

In addition, we see that, for any ¢, the random variable 0Z;5-2 — 0Z};5-2
converges to 0 when § — 0. By independence of the increments, all the finite-
dimensional distributions converge to zero. Using a criterion of tightness, it
is easy to show that the family (5Zt5_2 — 5Z[t5—2})5 is relatively compact,
and thus that the process §Z;5-2 — 6 Zy5-2) converges to zero. It then follows
from (6.53) that

0Z5—2 = V2X B as § — 0.

O

Remark 6.B.4. Recall that the process Z is defined as the weak limit of Z¢
as e — 0 (see Section 6.3.1). In Theorem 6.B.1, we have studied the limit of
(0Z5-24), as 0 goes to 0. An interesting question, that we leave open in this
work, is to study the limit of the process (6Z5 )t as € goes to 0.

te—2

The rest of this section is devoted to proving Theorem 6.B.1 only using
elementary arguments.

Direct proof of Theorem 6.B.1. We set V}‘S = 0Z;5-2, and prove the conver-
gence of the process V;‘S to v2A B, using the convergence criteria presented
in [11, Theorem 15.1]. Therefore, we need to show that

(i) the finite dimensional distributions of V;? converge to those of V2B,
(ii) the family (Vt‘s) s 1s relatively compact.

Before proving the above assertions, we establish an equation satisfied by
V2. Let F be a bounded function on Z and let § be a positive real number.
We set FO(x) = F(6x). Writing (6.38) for the bounded function F9, we see
that

t
F(6Z) = F (6Z) + / LF°(Z)ds + M,
0

where, for each §, M is a martingale. Writing the above equation at time
t672, we see that

t6—2
F(6Z5-2) = F (6Z0) + / LF° (Zs)ds + M};_,
0

which we recast as

F (Vf) —F <V05> + /t LF (Vj) ds + N? (6.54)
0
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where

N = MY,
and where the operator L is defined on bounded functions ¢ : 6Z — R by
A
Lo (z) = 2 (p(z4+90)+p(z—90) —2p(2)). (6.55)

The quadratic variation of the martingale (N?) is given by

(N®), = /w—Q <L (F5>2 (Z§> —9F? (zg) LF? <Z§>> ds.  (6.56)
0

We are now in position to prove the above two assertions.

Step 1: convergence of the finite dimensional distributions
The characteristic function of V;° at a given time ¢ is defined by

VueR, ¢ (u)=E (exp (quf)) .
For any u € R, we write (6.54) for the bounded function F' (z) = exp(iux):
exp (quf) = exp <iuV05> + /Ot (L‘S expiu'> (VS‘S) ds + Nf_
Taking expectations, we obtain the ordinary differential equation
5 o .
A=+ [ 5 (e —2) ) ds

the solution of which is

@) (u) = ) (u) exp [5—); <ew‘S 470 _ 2) t} . (6.57)
We now pass to the limit 6 — 0. We see that

A . .
%1_% 5_2 [ew(g + efzué _ 2} — _u2)\’

and that, using the dominated convergence theorem,

@5 (u) =R (ei“‘sz‘)) = /ei“‘szpzo (2)dz — 1.
6—0
Passing to the limit 6 — 0 in (6.57), we obtain that, for any ¢,
VueR, ¢ (u) P exp(—uXt) = E <exp <zu V2 Bt)) .
ﬁ

It then follows from the Lévy continuity theorem, relating the convergence
in distribution of random variables with the pointwise convergence of their
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characteristic functions, that, for any ¢, the random variable Vt5 converges
in distribution to v2\ B;.

By the stationarity and the independence of the increments of Z (see
Proposition 6.B.3), we deduce from the above convergence that, in distribu-
tion,

(VS‘S,VXS _ V86> — V2\ (Bs, By — Bs) for any t > s.

Hence,
<V;5, Vs‘s) — V2\ (B, Bs) forany t > s.

Using the same arguments, we prove that the distribution of any finite-
dimensional vector (V}‘i, Vt‘g, e thi) converges to the distribution of the
vector 2\ (By,, By, -+ , By, ). This concludes the proof of the first asser-
tion and of Step 1.

Step 2: the family (Vt‘s) s is relatively compact

We recall that, in view of Prohorov’s theorem (see e.g. [45, Theorem 2.2]),
we only have to show that the family (V;‘s) s 1s tight. To do so, we use the
criterion of [11, Theorem 15.5|, recalled in Theorem 6.A.6. Let us check its
assumptions (6.49) and (6.50).

The condition (6.49) is trivially satisfied: we set Zy = 0, hence Vj’ = 0
for any 9.

The condition (6.50) is more technical to prove. It is equivalent to show-
ing that, for any 7 > 0 and v > 0, there exist a« > 0 and dy > 0 such that,
for all t € 0,77,

Vo <dy, Plw: sup
t'et,max(T,t+a)]

VP (@) = Vi ()] 2 ) <n (6.58)

Let ¢t > 0. Using (6.54) where F is a bounded function of class C? with
bounded derivatives up to second order, we have

F (Vf) _F <V;§) - /t LOF (Vj) ds + N? — N2, (6.59)
p

In what follows, we successively bound the two terms of the right-hand side
of (6.59).

To bound from above the second term, we use (6.56) and (6.52), from
which we see that

t6—2

[F (52;5 + 5) _F (525)] ’

+[F (622 -5) - F (525)}2 ds,

(o)~ () = [

t6—2
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thus

(N%)e = (N°)y

IN

2|t —t'|072 sup [F (6z 4 6) — F (62)]?

A

2|t —t'|||F'|%. (6.60)
We now infer from the optional stopping theorem that N, = Ng . Nt‘S is

a martingale with respect to the filtration <],:_g’ u > 0) = (-7:64—15’ u > 0). By

u

the uniqueness of the quadratic variation, a simple calculation shows that
(Nu) = <N5>u+t - <N5>t-

We therefore deduce from (6.60) that

E [(NS - NE)T =E [(ﬁﬂ_t) 2} —E ((Ne-0))
=E (N = (N),) <2 [t =] |2,

Successively using Doob’s maximal inequality (see Proposition 6.A.3) for the
martingale N, the Cauchy-Schwartz inequality and the above estimate, we

obtain
v\ _ ENh.-N
2 v/2

VB[V - )]
v/2

V2a|[F[

v/2

N) — N

IN

P sup
t'elt,t+al

<

V2a [[F]3,
v/2

P sup
t'elt,t+al

We now turn to the first term of the right-hand side of (6.59). Using the
definition (6.55) of L?, we see that

Choosing a1 such that <7, we deduce that, for any o < oy,
we have

N} — N}

> g) <. (6.61)

vz, [LOF (2)| S AIF e

It follows that the first term of the right-hand side of (6.59) is bounded by

/t/ "Iop (vj) ds

S AE o e =]
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Choosing ag such that A\||F”||oc a2 < v/2, we obtain for any o < ay that

/t,t F (V‘5> ds

We deduce from (6.59), (6.61) and (6.62) that there exists @ = min(a;, as),
depending only on v, 1, ||[F”||oc and || F”||o0, such that, for all § < §y = 1,

sup <v/2. (6.62)

et t+al

P (w : sup ‘F <Vt‘S (w)) - F <V}‘§ (w))‘ > 1/) <n. (6.63)

t'elt,t+al

Recall that our aim is to prove (6.58), that is the above bound for F'(z) =
z. Recall also that (6.63) has been proved for functions F' that are regular
enough and bounded. In the sequel, we introduce a sequence of bounded
functions (F},), that approach the identity and for which we can define a
uniform .

For any n € N, we define F,, (see Fig. 6.17) by

F, (z) -n—1/2 , v<-n-—1

Fo(x) = z+@x+n)?/2 , zel-n—1,-n

F,(x) = =z , T €[-n,n] (6.64)
Fo(z) = 2—@&—-n)?/2 , zenn+1]

F,(z) = n+1/2 , z>n+1

By construction, the norms ||F) ||~ and ||F)/||~ are independent of n. Since
the parameter a in (6.63) only depends on ||[F'|s and [|[F"|« (besides v
and 7), we deduce from (6.63) that, for all 6 < dp = 1, all n € N and all
t € [0,7],

P (2,(1)) <, (6.65)

where, for any ¢,

O (t) = {w : sup

et t+al

F, (Vf (w)) _F, (V;? (w))‘ > 1/} . (6.66)
We now wish to pass to the limit n — oo in (6.65). We first claim that

the functions (F),)nen satisfy
Vn €N, Va,y € R, [Frii(x) — Fopa(y)] = [Fu(z) — Fu(y)l - (6.67)

As the functions F;, are increasing, it is sufficient to show that the function
Gy (x) = F41(z)—F,(x) is increasing to obtain (6.67). A direct computation
of G}, shows that this function is indeed increasing. We thus obtain (6.67).

Second, we observe that

VneN, Qu(t) C Quii(d), (6.68)
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Figure 6.17: The functions F), defined by (6.64).

where, we recall that the set €, (¢) is defined by (6.66). Indeed, let w € Q,,(t)
and let ¢’ € [t,t 4 a] be such that |F, (V2 (w)) — F, (V2 (w)){ > v. Then,
we deduce from (6.67) that

Fr (V8 (@) = Farr (Vi @)] 2

F, (Vf (w)) _F, (V;f @;))( >,

hence w € Q,41(t). We thus have shown (6.68).

Third, we introduce

At) = {w : sup

€[t t4al

Ve (@) = Vi ()| 2 }

and compute P (€'(t)). Let w € Q'(t). As any cad-lag function is bounded
on any compact set (see e.g. [11, Lemma 1 p. 110], and also the proof of
Lemma 6.2.5), there exists an integer N such that, for all ¢’ € [t,t + |, we
have |V (w)| < N. It follows that

W‘S(w)—%‘?(w)(:t |
reftt+a

sup

t'elt,t+al Fy <Vt6 (W)> — Fy <V;§ (w))

)

hence w € Qn(t) C UNQn(t). We have therefore shown that
ne
Q'(t) C U Qy(t).
(1) C U0t

Hence, using (6.68) and (6.65), we obtain

P(Q@) <P <nL€JNQn(t)> = lim P (2u(1)) <7
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for all ¢ € [0,1]. We have thus obtained (6.58). This concludes the proof of
the Step 2.

Conclusion: We have checked in the above two steps that the two asser-
tions mentioned at the begininng of the proof are satisfied. We are hence
in position to make use of [11, Theorem 15.1|, which shows the convergence
of the process V;® = 6Z,5-2 to v/2\ B;. This concludes the proof of Theo-
rem 6.B.1. U
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