56 research outputs found

    Periocular Biometrics in the Visible Spectrum

    Full text link

    Fusion Iris and Periocular Recognitions in Non-Cooperative Environment

    Get PDF
    The performance of iris recognition in non-cooperative environment can be negatively impacted when the resolution of the iris images is low which results in failure to determine the eye center, limbic and pupillary boundary of the iris segmentation. Hence, a combination with periocular features is suggested to increase the authenticity of the recognition system. However, the texture feature of periocular can be easily affected by a background complication while the colour feature of periocular is still limited to spatial information and quantization effects. This happens due to different distances between the sensor and the subject during the iris acquisition stage as well as image size and orientation. The proposed method of periocular feature extraction consists of a combination of rotation invariant uniform local binary pattern to select the texture features and a method of color moment to select the color features. Besides, a hue-saturation-value channel is selected to avoid loss of discriminative information in the eye image. The proposed method which consists of combination between texture and colour features provides the highest accuracy for the periocular recognition with more than 71.5% for the UBIRIS.v2 dataset and 85.7% for the UBIPr dataset. For the fusion recognitions, the proposed method achieved the highest accuracy with more than 85.9% for the UBIRIS.v2 dataset and 89.7% for the UBIPr dataset

    Recognizing Surgically Altered Face Images and 3D Facial Expression Recognition

    Get PDF
    AbstractAltering Facial appearances using surgical procedures are common now days. But it raised challenges for face recognition algorithms. Plastic surgery introduces non linear variations. Because of these variations it is difficult to be modeled by the existing face recognition system. Here presents a multi objective evolutionary granular algorithm. It operates on several granules extracted from a face images at multiple level of granularity. This granular information is unified in an evolutionary manner using multi objective genetic approach. Then identify the facial expression from the face images. For that 3D facial shapes are considering here. A novel automatic feature selection method is proposed based on maximizing the average relative entropy of marginalized class-conditional feature distributions and apply it to a complete pool of candidate features composed of normalized Euclidian distances between 83 facial feature points in the 3D space. A regularized multi-class AdaBoost classification algorithm is used here to get the highest average recognition rate

    A decision-level fusion strategy for multimodal ocular biometric in visible spectrum based on posterior probability

    Full text link
    © 2017 IEEE. In this work, we propose a posterior probability-based decision-level fusion strategy for multimodal ocular biometric in the visible spectrum employing iris, sclera and peri-ocular trait. To best of our knowledge this is the first attempt to design a multimodal ocular biometrics using all three ocular traits. Employing all these traits in combination can help to increase the reliability and universality of the system. For instance in some scenarios, the sclera and iris can be highly occluded or for completely closed eyes scenario, the peri-ocular trait can be relied on for the decision. The proposed system is constituted of three independent traits and their combinations. The classification output of the trait which produces highest posterior probability is to consider as the final decision. An appreciable reliability and universal applicability of ocular trait are achieved in experiments conducted employing the proposed scheme
    • …
    corecore