46,057 research outputs found

    The End of Slow Networks: It's Time for a Redesign

    Full text link
    Next generation high-performance RDMA-capable networks will require a fundamental rethinking of the design and architecture of modern distributed DBMSs. These systems are commonly designed and optimized under the assumption that the network is the bottleneck: the network is slow and "thin", and thus needs to be avoided as much as possible. Yet this assumption no longer holds true. With InfiniBand FDR 4x, the bandwidth available to transfer data across network is in the same ballpark as the bandwidth of one memory channel, and it increases even further with the most recent EDR standard. Moreover, with the increasing advances of RDMA, the latency improves similarly fast. In this paper, we first argue that the "old" distributed database design is not capable of taking full advantage of the network. Second, we propose architectural redesigns for OLTP, OLAP and advanced analytical frameworks to take better advantage of the improved bandwidth, latency and RDMA capabilities. Finally, for each of the workload categories, we show that remarkable performance improvements can be achieved

    Model-Based Proactive Read-Validation in Transaction Processing Systems

    Get PDF
    Concurrency control protocols based on read-validation schemes allow transactions which are doomed to abort to still run until a subsequent validation check reveals them as invalid. These late aborts do not favor the reduction of wasted computation and can penalize performance. To counteract this problem, we present an analytical model that predicts the abort probability of transactions handled via read-validation schemes. Our goal is to determine what are the suited points-along a transaction lifetime-to carry out a validation check. This may lead to early aborting doomed transactions, thus saving CPU time. We show how to exploit the abort probability predictions returned by the model in combination with a threshold-based scheme to trigger read-validations. We also show how this approach can definitely improve performance-leading up to 14 % better turnaround-as demonstrated by some experiments carried out with a port of the TPC-C benchmark to Software Transactional Memory

    Implementing PRISMA/DB in an OOPL

    Get PDF
    PRISMA/DB is implemented in a parallel object-oriented language to gain insight in the usage of parallelism. This environment allows us to experiment with parallelism by simply changing the allocation of objects to the processors of the PRISMA machine. These objects are obtained by a strictly modular design of PRISMA/DB. Communication between the objects is required to cooperatively handle the various tasks, but it limits the potential for parallelism. From this approach, we hope to gain a better understanding of parallelism, which can be used to enhance the performance of PRISMA/DB.\ud The work reported in this document was conducted as part of the PRISMA project, a joint effort with Philips Research Eindhoven, partially supported by the Dutch "Stimuleringsprojectteam Informaticaonderzoek (SPIN)

    Control versus Data Flow in Parallel Database Machines

    Get PDF
    The execution of a query in a parallel database machine can be controlled in either a control flow way, or in a data flow way. In the former case a single system node controls the entire query execution. In the latter case the processes that execute the query, although possibly running on different nodes of the system, trigger each other. Lately, many database research projects focus on data flow control since it should enhance response times and throughput. The authors study control versus data flow with regard to controlling the execution of database queries. An analytical model is used to compare control and data flow in order to gain insights into the question which mechanism is better under which circumstances. Also, some systems using data flow techniques are described, and the authors investigate to which degree they are really data flow. The results show that for particular types of queries data flow is very attractive, since it reduces the number of control messages and balances these messages over the node

    The End of a Myth: Distributed Transactions Can Scale

    Full text link
    The common wisdom is that distributed transactions do not scale. But what if distributed transactions could be made scalable using the next generation of networks and a redesign of distributed databases? There would be no need for developers anymore to worry about co-partitioning schemes to achieve decent performance. Application development would become easier as data placement would no longer determine how scalable an application is. Hardware provisioning would be simplified as the system administrator can expect a linear scale-out when adding more machines rather than some complex sub-linear function, which is highly application specific. In this paper, we present the design of our novel scalable database system NAM-DB and show that distributed transactions with the very common Snapshot Isolation guarantee can indeed scale using the next generation of RDMA-enabled network technology without any inherent bottlenecks. Our experiments with the TPC-C benchmark show that our system scales linearly to over 6.5 million new-order (14.5 million total) distributed transactions per second on 56 machines.Comment: 12 page

    Prompt Application-Transparent Transaction Revalidation in Software Transactional Memory

    Get PDF
    Software Transactional Memory (STM) allows encapsulating shared-data accesses within transactions, executed with atomicity and isolation guarantees. The assessment of the consistency of a running transaction is performed by the STM layer at specific points of its execution, such as when a read or write access to a shared object occurs, or upon a commit attempt. However, performance and energy efficiency issues may arise when no shared-data read/write operation occurs for a while along a thread running a transaction. In this scenario, the STM layer may not regain control for a considerable amount of time, thus not being able to early detect if such transaction has become inconsistent in the meantime. To tackle this problem we present an STM architecture that, thanks to a lightweight operating system support, is able to perform a fine-grain periodic (hence prompt) revalidation of running transactions. Our proposal targets Linux and x86 systems and has been integrated with the open source TinySTM package. Experimental results with a port of the TPC-C benchmark to STM environments show the effectiveness of our solution

    Preemptive Software Transactional Memory

    Get PDF
    In state-of-the-art Software Transactional Memory (STM) systems, threads carry out the execution of transactions as non-interruptible tasks. Hence, a thread can react to the injection of a higher priority transactional task and take care of its processing only at the end of the currently executed transaction. In this article we pursue a paradigm shift where the execution of an in-memory transaction is carried out as a preemptable task, so that a thread can start processing a higher priority transactional task before finalizing its current transaction. We achieve this goal in an application-transparent manner, by only relying on Operating System facilities we include in our preemptive STM architecture. With our approach we are able to re-evaluate CPU assignment across transactions along a same thread every few tens of microseconds. This is mandatory for an effective priority-aware architecture given the typically finer-grain nature of in-memory transactions compared to their counterpart in database systems. We integrated our preemptive STM architecture with the TinySTM package, and released it as open source. We also provide the results of an experimental assessment of our proposal based on running a port of the TPC-C benchmark to the STM environment
    corecore