668 research outputs found

    Layered architecture for quantum computing

    Full text link
    We develop a layered quantum computer architecture, which is a systematic framework for tackling the individual challenges of developing a quantum computer while constructing a cohesive device design. We discuss many of the prominent techniques for implementing circuit-model quantum computing and introduce several new methods, with an emphasis on employing surface code quantum error correction. In doing so, we propose a new quantum computer architecture based on optical control of quantum dots. The timescales of physical hardware operations and logical, error-corrected quantum gates differ by several orders of magnitude. By dividing functionality into layers, we can design and analyze subsystems independently, demonstrating the value of our layered architectural approach. Using this concrete hardware platform, we provide resource analysis for executing fault-tolerant quantum algorithms for integer factoring and quantum simulation, finding that the quantum dot architecture we study could solve such problems on the timescale of days.Comment: 27 pages, 20 figure

    Resource optimization for fault-tolerant quantum computing

    Get PDF
    In this thesis we examine a variety of techniques for reducing the resources required for fault-tolerant quantum computation. First, we show how to simplify universal encoded computation by using only transversal gates and standard error correction procedures, circumventing existing no-go theorems. We then show how to simplify ancilla preparation, reducing the cost of error correction by more than a factor of four. Using this optimized ancilla preparation, we develop improved techniques for proving rigorous lower bounds on the noise threshold. Additional overhead can be incurred because quantum algorithms must be translated into sequences of gates that are actually available in the quantum computer. In particular, arbitrary single-qubit rotations must be decomposed into a discrete set of fault-tolerant gates. We find that by using a special class of non-deterministic circuits, the cost of decomposition can be reduced by as much as a factor of four over state-of-the-art techniques, which typically use deterministic circuits. Finally, we examine global optimization of fault-tolerant quantum circuits under physical connectivity constraints. We adapt techniques from VLSI in order to minimize time and space usage for computations in the surface code, and we develop a software prototype to demonstrate the potential savings.Comment: 231 pages, Ph.D. thesis, University of Waterlo

    The Computational Lens: from Quantum Physics to Neuroscience

    Full text link
    Two transformative waves of computing have redefined the way we approach science. The first wave came with the birth of the digital computer, which enabled scientists to numerically simulate their models and analyze massive datasets. This technological breakthrough led to the emergence of many sub-disciplines bearing the prefix "computational" in their names. Currently, we are in the midst of the second wave, marked by the remarkable advancements in artificial intelligence. From predicting protein structures to classifying galaxies, the scope of its applications is vast, and there can only be more awaiting us on the horizon. While these two waves influence scientific methodology at the instrumental level, in this dissertation, I will present the computational lens in science, aiming at the conceptual level. Specifically, the central thesis posits that computation serves as a convenient and mechanistic language for understanding and analyzing information processing systems, offering the advantages of composability and modularity. This dissertation begins with an illustration of the blueprint of the computational lens, supported by a review of relevant previous work. Subsequently, I will present my own works in quantum physics and neuroscience as concrete examples. In the concluding chapter, I will contemplate the potential of applying the computational lens across various scientific fields, in a way that can provide significant domain insights, and discuss potential future directions.Comment: PhD thesis, Harvard University, Cambridge, Massachusetts, USA. 2023. Some chapters report joint wor

    STRAINTRONIC NANOMAGNETIC DEVICES FOR NON-BOOLEAN COMPUTING

    Get PDF
    Nanomagnetic devices have been projected as an alternative to transistor-based switching devices due to their non-volatility and potentially superior energy-efficiency. The energy efficiency is enhanced by the use of straintronics which involves the application of a voltage to a piezoelectric layer to generate a strain which is ultimately transferred to an elastically coupled magnetostrictive nanomaget, causing magnetization rotation. The low energy dissipation and non-volatility characteristics make straintronic nanomagnets very attractive for both Boolean and non-Boolean computing applications. There was relatively little research on straintronic switching in devices built with real nanomagnets that invariably have defects and imperfections, or their adaptation to non-Boolean computing, both of which have been studied in this work. Detailed studies of the effects of nanomagnet material fabrication defects and surface roughness variation (found in real nanomagnets) on the switching process and ultimately device performance of those switches have been performed theoretically. The results of these studies place the viability of straintronics logic (Boolean) and/or memory in question. With a view to analog computing and signal processing, analog spin wave based device operation has been evaluated in the presence of defects and it was found that defects impact their performance, which can be a major concern for the spin wave based device community. Additionally, the design challenge for low barrier nanomagnet which is the building block of binary stochastic neurons based probabilistic computing device in case of real nanomagnets has also been investigated. This study also cast some doubt on the efficacy of probabilistic computing devices. Fortunately, there are some non-Boolean applications based on the collective action of array of nanomagnets which are very forgiving of material defects. One example is image processing using dipole coupled nanomagnets which is studied here and it showed promising result for noise correction and edge enhancement of corrupted pixels in an image. Moreover, a single magneto tunnel junction based microwave oscillator was proposed for the first time and theoretical simulations showed that it is capable of better performance compared to traditional microwave oscillators. The experimental part of this work dealt with spin wave modes excited by surface acoustic waves, studied with time resolved magneto optic Kerr effect (TR-MOKE). New hybrid spin wave modes were observed for the first time. An experiment was carried out to emulate simulated annealing in a system of dipole coupled magnetostrictive nanomagnets where strain served as the simulated annealing agent. This was a promising outcome and it is the first demonstration of the hardware variant of simulated annealing of a many body system based on magnetostrictive nanomagnets. Finally, a giant spin Hall effect actuated surface acoustic wave antenna was demonstrated experimentally. This is the first observation of photon to phonon conversion using spin-orbit torque and although the observed conversion efficiency was poor (1%), it opened the pathway for a new acoustic radiator. These studies complement past work done in the area of straintronics

    Design and Synthesis of Efficient Circuits for Quantum Computers

    Get PDF
    Οι πρόσφατες εξελίξεις στον τομέα της πειραματικής κατασκευής κβαντικών υπολογιστών με εξαρτήματα αυξημένης αξιοπιστίας δείχνει ότι η κατασκευή τέτοιων μεγάλων μηχανών βασισμένων στις αρχές της κβαντικής φυσικής είναι πιθανή στο κοντινό μέλλον. Καθώς το μέγεθος των μελλοντικών κβαντικών υπολογιστών θα αυξάνεται, η σχεδίαση αποδοτικότερων κβαντικών κυκλωμάτων και μεθόδων σχεδίασης θα αποκτήσει σταδιακά πρακτικό ενδιαφέρον. Η συνεισφορά της διατριβής στην κατεύθυνση της σχεδίασης αποδοτικών κβαντικών κυκλωμάτων είναι διττή: Η πρώτη είναι η σχεδίαση καινοτόμων αποδοτικών αριθμητικών κβαντικών κυκλωμάτων βασισμένων στον Κβαντικό Μετασχηματισμό Fourier (QFT), όπως πολλαπλασιαστής-με-σταθερά-συσσωρευτής (MAC) και διαιρέτης με σταθερά, με γραμμικό βάθος (ή ταχύτητα) ως προς τον αριθμό ψηφίων των ακεραίων. Αυτά τα κυκλώματα συνδυάζονται αποτελεσματικά ώστε να επιτελέσουν την πράξη του modulo πολλαπλασιασμού με σταθερά με γραμμική πολυπλοκότητα χρόνου και χώρου και συνεπώς μπορούν να επιτελέσουν την πράξη της modulo εκθετικοποίησης (modular exponentiation) με τετραγωνική πολυπλοκότητα χρόνου και γραμμική πολυπλοκότητα χώρου. Οι πράξεις της modulo εκθετικοποίησης και του modulo πολλαπλασιασμού είναι αναπόσπαστα μέρη του σημαντικού κβαντικού αλγορίθμου παραγοντοποίησης του Shor, αλλά και άλλων κβαντικών αλγορίθμων της ίδιας οικογένειας, γνωστών ως κβαντική εκτίμηση φάσης (Quantum Phase Estimation). Αντιμετωπίζονται με αποτελεσματικό τρόπο σημαντικά προβλήματα υλοποίησης, που σχετίζονται με την απαίτηση χρήσης κβαντικών πυλών περιστροφής υψηλής ακρίβειας, καθώς και της χρήσης τοπικών επικοινωνιών. Η δεύτερη συνεισφορά της διατριβής είναι μία γενική μεθοδολογία ιεραρχικής σύνθεσης κβαντικών και αντιστρέψιμων κυκλωμάτων αυθαίρετης πολυπλοκότητας και μεγέθους. Η ιεραρχική μέθοδος σύνθεσης χειρίζεται καλύτερα μεγάλα κυκλώματα σε σχέση με τις επίπεδες μεθόδους σύνθεσης. Η προτεινόμενη μέθοδος προσφέρει πλεονεκτήματα σε σχέση με τις συνήθεις ιεραρχικές συνθέσεις που χρησιμοποιούν την μέθοδο "υπολογισμός-αντιγραφή-αντίστροφος υπολογισμός" του Bennett.The recent advances in the field of experimental construction of quantum computers with increased fidelity components shows that large-scale machines based on the principles of quantum physics are likely to be realized in the near future. As the size of the future quantum computers will be increased, efficient quantum circuits and design methods will gradually gain practical interest. The contribution of this thesis towards the design of efficient quantum circuits is two-fold. The first is the design of novel efficient quantum arithmetic circuits based on the Quantum Fourier Transform (QFT), like multiplier-with-constant-and-accumulator (MAC) and divider by constant, both of linear depth (or speed) with respect with the bits number of the integer operands. These circuits are effectively combined so as they can perform modular multiplication by constant in linear depth and space and consequently modular exponentiation in quadratic time and linear space. Modular exponentiation and modular multiplication operations are integral parts of the important quantum factorization algorithm of Shor and other quantum algorithms of the same family, known as Quantum Phase Estimation algorithms. Important implementation problems like the required high accuracy of the employed rotation quantum gates and the local communications between the gates are effectively addressed. The second contribution of this thesis is a generic hierarchical synthesis methodology for arbitrary complex and large quantum and reversible circuits. The methodology can handle more easily larger circuits relative to the flat synthesis methods. The proposed method offers advantages over the standard hierarchical synthesis which uses Bennett's method of "compute-copy-uncompute"

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma
    corecore