534,683 research outputs found

    Collaborative Based Filtering Approach for Web Service Recommendations using GEO-Locations

    Get PDF
    Service computing is one of Internet-based computing, whereas the shared configurable resources (e.g., infrastructure, platform, and software) are provided to computers and other devices are as services. Strongly promoted by the leading industrial companies like, Amazon, Google, Microsoft, IBM, etc, In recent years, service computing are quickly becoming popular. Applications are deployed in real time environment are typically large scale and complex. The rising popularity of service computing, it is how to build high-quality service applications it becomes an urgently required research problem. In Similar, the traditional component-based systems, cloud applications are typically involves multiple cloud components communicating with each other over application programming interfaces, through web services. On-functional performance of cloud services are usually described by the quality-of-service (QoS). QoS is an important research topic in cloud computing. When the creation optimal cloud service selection from a set of functionally corresponding services, QoS values are of cloud services provided the valuable information to assist decision making. The component-based systems, software components are invoked locally in tradition, while in cloud applications, the cloud services are invoked remotely by Internet connections. To evade the slow and expensive real-world service invocation QoS ranking prediction framework is used. This framework requires no extra invocations of cloud services when making QoS ranking prediction can implement novel collaborative filtering approach to recommend the web services with improved performance. DOI: 10.17762/ijritcc2321-8169.15033

    A hybrid model-based and memory-based short-term traffic prediction system

    Get PDF
    Short-term traffic forecasting capabilities on freeways and major arterials have received special attention in the past decade due primarily to their vital role in supporting various travelers\u27 trip decisions and traffic management functions. This research presents a hybrid model-based and memory-based methodology to improve freeway traffic prediction performance. The proposed methodology integrates both approaches to strengthen predictions under both recurrent and non-recurrent conditions. The model-based approach relies on a combination of static and dynamic neural network architectures to achieve optimal prediction performance under various input and traffic condition settings. Concurrently, the memory-based component is derived from the data archival system that encodes the commuters\u27 travel experience in the past. The outcomes of the two approaches are two prediction values for each query case. The two values are subsequently processed by a prediction query manager, which ultimately produces one final prediction value using an error-based decision algorithm. It was found that the hybrid approach produces speed estimates with smaller errors than if the two approaches employed separately. The proposed prediction approach could be used in deriving travel times more reliable as the Traffic Management Centers move towards implementing Advanced Traveler Information Systems (ATIS) applications

    Comparative Analysis of Predictive Performance in Nonparametric Functional Regression: A Case Study of Spectrometric Fat Content Prediction

    Get PDF
    Objective: This research aims to compare two nonparametric functional regression models, the Kernel Model and the K-Nearest Neighbor (KNN) Model, with a focus on predicting scalar responses from functional covariates. Two semi-metrics, one based on second derivatives and the other on Functional Principle Component Analysis, are employed for prediction. The study assesses the accuracy of these models by computing Mean Square Errors (MSE) and provides practical applications for illustration. Method: The study delves into the realm of nonparametric functional regression, where the response variable (Y) is scalar, and the covariate variable (x) is a function. The Kernel Model, known as funopare.kernel.cv, and the KNN Model, termed funopare.knn.gcv, are used for prediction. The Kernel Model employs automatic bandwidth selection via Cross-Validation, while the KNN Model employs a global smoothing parameter. The performance of both models is evaluated using MSE, considering two different semi-metrics. Results: The results indicate that the KNN Model outperforms the Kernel Model in terms of prediction accuracy, as supported by the computed MSE. The choice of semi-metric, whether based on second derivatives or Functional Principle Component Analysis, impacts the model's performance. Two real-world applications, Spectrometric Data for predicting fat content and Canadian Weather Station data for predicting precipitation, demonstrate the practicality and utility of the models. Conclusion: This research provides valuable insights into nonparametric functional regression methods for predicting scalar responses from functional covariates. The KNN Model, when compared to the Kernel Model, offers superior predictive performance. The selection of an appropriate semi-metric is essential for model accuracy. Future research may explore the extension of these models to cases involving multivariate responses and consider interactions between response components

    EFICAz²: enzyme function inference by a combined approach enhanced by machine learning

    Get PDF
    ©2009 Arakaki et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1471-2105/10/107doi:10.1186/1471-2105-10-107Background: We previously developed EFICAz, an enzyme function inference approach that combines predictions from non-completely overlapping component methods. Two of the four components in the original EFICAz are based on the detection of functionally discriminating residues (FDRs). FDRs distinguish between member of an enzyme family that are homofunctional (classified under the EC number of interest) or heterofunctional (annotated with another EC number or lacking enzymatic activity). Each of the two FDR-based components is associated to one of two specific kinds of enzyme families. EFICAz exhibits high precision performance, except when the maximal test to training sequence identity (MTTSI) is lower than 30%. To improve EFICAz's performance in this regime, we: i) increased the number of predictive components and ii) took advantage of consensual information from the different components to make the final EC number assignment. Results: We have developed two new EFICAz components, analogs to the two FDR-based components, where the discrimination between homo and heterofunctional members is based on the evaluation, via Support Vector Machine models, of all the aligned positions between the query sequence and the multiple sequence alignments associated to the enzyme families. Benchmark results indicate that: i) the new SVM-based components outperform their FDR-based counterparts, and ii) both SVM-based and FDR-based components generate unique predictions. We developed classification tree models to optimally combine the results from the six EFICAz components into a final EC number prediction. The new implementation of our approach, EFICAz², exhibits a highly improved prediction precision at MTTSI < 30% compared to the original EFICAz, with only a slight decrease in prediction recall. A comparative analysis of enzyme function annotation of the human proteome by EFICAz² and KEGG shows that: i) when both sources make EC number assignments for the same protein sequence, the assignments tend to be consistent and ii) EFICAz² generates considerably more unique assignments than KEGG. Conclusion: Performance benchmarks and the comparison with KEGG demonstrate that EFICAz² is a powerful and precise tool for enzyme function annotation, with multiple applications in genome analysis and metabolic pathway reconstruction. The EFICAz² web service is available at: http://cssb.biology.gatech.edu/skolnick/webservice/EFICAz2/index.htm
    corecore