41,223 research outputs found

    A trustworthy mobile agent infrastructure for network management

    Get PDF
    Despite several advantages inherent in mobile-agent-based approaches to network management as compared to traditional SNMP-based approaches, industry is reluctant to adopt the mobile agent paradigm as a replacement for the existing manager-agent model; the management community requires an evolutionary, rather than a revolutionary, use of mobile agents. Furthermore, security for distributed management is a major concern; agent-based management systems inherit the security risks of mobile agents. We have developed a Java-based mobile agent infrastructure for network management that enables the safe integration of mobile agents with the SNMP protocol. The security of the system has been evaluated under agent to agent-platform and agent to agent attacks and has proved trustworthy in the performance of network management tasks

    Preventing Supply Chain Vulnerabilities in Java with a Fine-Grained Permission Manager

    Full text link
    Integrating third-party packages accelerates modern software engineering, but introduces the risk of software supply chain vulnerabilities. Vulnerabilities in applications' dependencies are being exploited worldwide. Often, these exploits leverage features that are present in a package, yet unneeded by an application. Unfortunately, the current generation of permission managers, such as SELinux, Docker containers, and the Java Security Manager, are too coarse-grained to usefully support engineers and operators in mitigating these vulnerabilities. Current approaches offer permissions only at the application's granularity, lumping legitimate operations made by safe packages with illegitimate operations made by exploited packages. This strategy does not reflect modern engineering practice. we need a permission manager capable of distinguishing between actions taken by different packages in an application's supply chain. In this paper, we describe Next-JSM, the first fine-grained ("supply chain aware") permission manager for Java applications. Next-JSM supports permission management at package-level granularity. Next-JSM faces three key challenges: operating on existing JVMs and without access to application or package source code, minimizing performance overhead in applications with many packages, and helping operators manage finer-grained permissions. We show that these challenges can be addressed through bytecode rewriting; appropriate data structures and algorithms; and an expressive permission notation plus automated tooling to establish default permission. In our evaluation, we report that Next-JSM mitigates 11 of the 12 package vulnerabilities we evaluated and incurs an average 2.72% overhead on the Dacapobench benchmark. Qualitatively, we argue that Next-JSM addresses the shortcomings of the (recently deprecated) Java Security Manager (JSM).Comment: 15 pages, 5 figures, 5 table

    Next-Generation EU DataGrid Data Management Services

    Full text link
    We describe the architecture and initial implementation of the next-generation of Grid Data Management Middleware in the EU DataGrid (EDG) project. The new architecture stems out of our experience and the users requirements gathered during the two years of running our initial set of Grid Data Management Services. All of our new services are based on the Web Service technology paradigm, very much in line with the emerging Open Grid Services Architecture (OGSA). We have modularized our components and invested a great amount of effort towards a secure, extensible and robust service, starting from the design but also using a streamlined build and testing framework. Our service components are: Replica Location Service, Replica Metadata Service, Replica Optimization Service, Replica Subscription and high-level replica management. The service security infrastructure is fully GSI-enabled, hence compatible with the existing Globus Toolkit 2-based services; moreover, it allows for fine-grained authorization mechanisms that can be adjusted depending on the service semantics.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla,Ca, USA, March 2003 8 pages, LaTeX, the file contains all LaTeX sources - figures are in the directory "figures

    A Lightweight and Flexible Mobile Agent Platform Tailored to Management Applications

    Full text link
    Mobile Agents (MAs) represent a distributed computing technology that promises to address the scalability problems of centralized network management. A critical issue that will affect the wider adoption of MA paradigm in management applications is the development of MA Platforms (MAPs) expressly oriented to distributed management. However, most of available platforms impose considerable burden on network and system resources and also lack of essential functionality. In this paper, we discuss the design considerations and implementation details of a complete MAP research prototype that sufficiently addresses all the aforementioned issues. Our MAP has been implemented in Java and tailored for network and systems management applications.Comment: 7 pages, 5 figures; Proceedings of the 2006 Conference on Mobile Computing and Wireless Communications (MCWC'2006

    Quire: Lightweight Provenance for Smart Phone Operating Systems

    Full text link
    Smartphone apps often run with full privileges to access the network and sensitive local resources, making it difficult for remote systems to have any trust in the provenance of network connections they receive. Even within the phone, different apps with different privileges can communicate with one another, allowing one app to trick another into improperly exercising its privileges (a Confused Deputy attack). In Quire, we engineered two new security mechanisms into Android to address these issues. First, we track the call chain of IPCs, allowing an app the choice of operating with the diminished privileges of its callers or to act explicitly on its own behalf. Second, a lightweight signature scheme allows any app to create a signed statement that can be verified anywhere inside the phone. Both of these mechanisms are reflected in network RPCs, allowing remote systems visibility into the state of the phone when an RPC is made. We demonstrate the usefulness of Quire with two example applications. We built an advertising service, running distinctly from the app which wants to display ads, which can validate clicks passed to it from its host. We also built a payment service, allowing an app to issue a request which the payment service validates with the user. An app cannot not forge a payment request by directly connecting to the remote server, nor can the local payment service tamper with the request

    Remote attestation mechanism for embedded devices based on physical unclonable functions

    Get PDF
    Remote attestation mechanisms are well studied in the high-end computing environments; however, the same is not true for embedded devices-especially for smart cards. With ever changing landscape of smart card technology and advancements towards a true multi-application platform, verifying the current state of the smart card is significant to the overall security of such proposals. The initiatives proposed by GlobalPlatform Consumer Centric Model (GP-CCM) and User Centric Smart Card Ownership Model (UCOM) enables a user to download any application as she desire-depending upon the authorisation of the application provider. Before an application provider issues an application to a smart card, verifying the current state of the smart card is crucial to the security of the respective application. In this paper, we analyse the rationale behind the remote attestation mechanism for smart cards, and the fundamental features that such a mechanism should possess. We also study the applicability of Physical Unclonable Functions (PUFs) for the remote attestation mechanism and propose two algorithms to achieve the stated features of remote attestation. The proposed algorithms are implemented in a test environment to evaluate their performance. © 2013 The authors and IOS Press. All rights reserved
    corecore