6,959 research outputs found

    Power Allocation and Cooperative Diversity in Two-Way Non-Regenerative Cognitive Radio Networks

    Full text link
    In this paper, we investigate the performance of a dual-hop block fading cognitive radio network with underlay spectrum sharing over independent but not necessarily identically distributed (i.n.i.d.) Nakagami-mm fading channels. The primary network consists of a source and a destination. Depending on whether the secondary network which consists of two source nodes have a single relay for cooperation or multiple relays thereby employs opportunistic relay selection for cooperation and whether the two source nodes suffer from the primary users' (PU) interference, two cases are considered in this paper, which are referred to as Scenario (a) and Scenario (b), respectively. For the considered underlay spectrum sharing, the transmit power constraint of the proposed system is adjusted by interference limit on the primary network and the interference imposed by primary user (PU). The developed new analysis obtains new analytical results for the outage capacity (OC) and average symbol error probability (ASEP). In particular, for Scenario (a), tight lower bounds on the OC and ASEP of the secondary network are derived in closed-form. In addition, a closed from expression for the end-to-end OC of Scenario (a) is achieved. With regards to Scenario (b), a tight lower bound on the OC of the secondary network is derived in closed-form. All analytical results are corroborated using Monte Carlo simulation method

    Packet Relaying Control in Sensing-based Spectrum Sharing Systems

    Full text link
    Cognitive relaying has been introduced for opportunistic spectrum access systems by which a secondary node forwards primary packets whenever the primary link faces an outage condition. For spectrum sharing systems, cognitive relaying is parametrized by an interference power constraint level imposed on the transmit power of the secondary user. For sensing-based spectrum sharing, the probability of detection is also involved in packet relaying control. This paper considers the choice of these two parameters so as to maximize the secondary nodes' throughput under certain constraints. The analysis leads to a Markov decision process using dynamic programming approach. The problem is solved using value iteration. Finally, the structural properties of the resulting optimal control are highlighted

    Resource Allocation in Wireless Networks with RF Energy Harvesting and Transfer

    Full text link
    Radio frequency (RF) energy harvesting and transfer techniques have recently become alternative methods to power the next generation of wireless networks. As this emerging technology enables proactive replenishment of wireless devices, it is advantageous in supporting applications with quality-of-service (QoS) requirement. This article focuses on the resource allocation issues in wireless networks with RF energy harvesting capability, referred to as RF energy harvesting networks (RF-EHNs). First, we present an overview of the RF-EHNs, followed by a review of a variety of issues regarding resource allocation. Then, we present a case study of designing in the receiver operation policy, which is of paramount importance in the RF-EHNs. We focus on QoS support and service differentiation, which have not been addressed by previous literatures. Furthermore, we outline some open research directions.Comment: To appear in IEEE Networ

    On Information and Energy Cooperation in Energy Harvesting Cognitive Radio

    Full text link
    This paper considers the cooperation between primary and secondary users at information and energy levels when both users are energy harvesting nodes. In particular, a secondary transmitter helps relaying the primary message, and in turn, gains the spectrum access as a reward. Also, the primary transmitter supplies energy to the secondary transmitter if the latter is energy-constrained, which facilitates an uninterrupted cooperation. We address this two-level cooperation over a finite horizon with the finite battery constraint at the secondary transmitter. While promising the rate-guaranteed service to both primary and secondary users, we aim to maximize the primary rate. We develop an iterative algorithm that obtains the optimal offline power policies for primary and secondary users. To acquire insights about the structure of the optimal solution, we examine specific scenarios. Furthermore, we investigate the effects of the secondary rate constraint and finite battery on the primary rate and the probability of cooperation. We show that the joint information and energy cooperation increases the chances of cooperation and achieves significant rate gains over only information cooperation.Comment: 6 pages, 4 figures, to be presented in IEEE PIMRC 201
    • …
    corecore