447 research outputs found

    5GNOW: Challenging the LTE Design Paradigms of Orthogonality and Synchronicity

    Full text link
    LTE and LTE-Advanced have been optimized to deliver high bandwidth pipes to wireless users. The transport mechanisms have been tailored to maximize single cell performance by enforcing strict synchronism and orthogonality within a single cell and within a single contiguous frequency band. Various emerging trends reveal major shortcomings of those design criteria: 1) The fraction of machine-type-communications (MTC) is growing fast. Transmissions of this kind are suffering from the bulky procedures necessary to ensure strict synchronism. 2) Collaborative schemes have been introduced to boost capacity and coverage (CoMP), and wireless networks are becoming more and more heterogeneous following the non-uniform distribution of users. Tremendous efforts must be spent to collect the gains and to manage such systems under the premise of strict synchronism and orthogonality. 3) The advent of the Digital Agenda and the introduction of carrier aggregation are forcing the transmission systems to deal with fragmented spectrum. 5GNOW is an European research project supported by the European Commission within FP7 ICT Call 8. It will question the design targets of LTE and LTE-Advanced having these shortcomings in mind and the obedience to strict synchronism and orthogonality will be challenged. It will develop new PHY and MAC layer concepts being better suited to meet the upcoming needs with respect to service variety and heterogeneous transmission setups. Wireless transmission networks following the outcomes of 5GNOW will be better suited to meet the manifoldness of services, device classes and transmission setups present in envisioned future scenarios like smart cities. The integration of systems relying heavily on MTC into the communication network will be eased. The per-user experience will be more uniform and satisfying. To ensure this 5GNOW will contribute to upcoming 5G standardization.Comment: Submitted to Workshop on Mobile and Wireless Communication Systems for 2020 and beyond (at IEEE VTC 2013, Spring

    Multi-service systems: an enabler of flexible 5G air-interface

    Get PDF
    Multi-service system is an enabler to flexibly support diverse communication requirements for the next generation wireless communications. In such a system, multiple types of services co-exist in one baseband system with each service having its optimal frame structure and low out of band emission (OoBE) waveforms operating on the service frequency band to reduce the inter-service-band-interference (ISvcBI). In this article, a framework for multi-service system is established and the challenges and possible solutions are studied. The multi-service system implementation in both time and frequency domain is discussed. Two representative subband filtered multicarrier (SFMC) waveforms: filtered orthogonal frequency division multiplexing (F-OFDM) and universal filtered multi-carrier (UFMC) are considered in this article. Specifically, the design methodology, criteria, orthogonality conditions and prospective application scenarios in the context of 5G are discussed. We consider both single-rate (SR) and multi-rate (MR) signal processing methods. Compared with the SR system, the MR system has significantly reduced computational complexity at the expense of performance loss due to inter-subband-interference (ISubBI) in MR systems. The ISvcBI and ISubBI in MR systems are investigated with proposed low-complexity interference cancelation algorithms to enable the multi-service operation in low interference level conditions

    Generalized Fast-Convolution-based Filtered-OFDM: Techniques and Application to 5G New Radio

    Get PDF
    This paper proposes a generalized model and methods for fast-convolution (FC)-based waveform generation and processing with specific applications to fifth generation new radio (5G-NR). Following the progress of 5G-NR standardization in 3rd generation partnership project (3GPP), the main focus is on subband-filtered cyclic prefix (CP) orthogonal frequency-division multiplexing (OFDM) processing with specific emphasis on spectrally well localized transmitter processing. Subband filtering is able to suppress the interference leakage between adjacent subbands, thus supporting different numerologies for so-called bandwidth parts as well as asynchronous multiple access. The proposed generalized FC scheme effectively combines overlapped block processing with time- and frequency-domain windowing to provide highly selective subband filtering with very low intrinsic interference level. Jointly optimized multi-window designs with different allocation sizes and design parameters are compared in terms of interference levels and implementation complexity. The proposed methods are shown to clearly outperform the existing state-of-the-art windowing and filtering-based methods.Comment: To appear in IEEE Transactions on Signal Processin

    Theoretical Analysis and Performance Comparison of multi-carrier Waveforms for 5G Wireless Applications

    Get PDF
    5G wireless technology is a new wireless communication system that must meet different complementary needs: high data rate for mobile services, low energy consumption and long-range for connected objects, low latency to ensure real-time communication for critical applications and high spectral efficiency to improve the overall system capacity. The waveforms and associated signals processing, present a real challenge in the implementation for each generation of wireless communication networks. This paper presents the diverse waveforms candidate for 5G systems, including: CE-OFDM (Constant Envelope OFDM), Filter-Bank Multi Carrier (FBMC), Universal Filtered Multi-Carrier (UFMC) and Filtered OFDM (F-OFDM). In this work, simulations are carried out in order to compare the performance of the OFDM, CE-OFDM, F-OFDM, UFMC and FBMC in terms of Power spectral density (PSD) and of Bit Error Rate (BER). It has been demonstrated that (CE-OFDM), constitutes a more efficient solution in terms of energy consumption than OFDM signal. Moreover, the (F-OFDM), (UFMC) and (FBMC) could constitute a more efficient solution in terms of power spectral density, spectral efficiency and bit error rates. In fact, CE-OFDM reduces the Peak to Average Power Ratio (PAPR) associated with OFDM system, FBMC is a method of improving out-of-band (OOB) characteristic by filtering each subcarrier and resisting the inter-carrier interference (ICI). While, UFMC offers a high spectral efficiency compared to OFDM

    UFMC and f-OFDM: Contender Waveforms of 5G Wireless Communication System

    Get PDF
    Because of the increased demand for high data rates, looking for using new technologies that meet these requirements are considered a necessary. Hence, Fifth Generation (5G) is expected to be impressive in offering these requirements and implement around 2020. Orthogonal Frequency Division Multiplexing (OFDM) is considered a main technology of LTE wireless communication standards. Due to its suffering from high Bit Error Rate (BER) and Peak Average Power Ratio (PAPR), OFDM doesn't consider as charming solution for future wireless communications and several emerging applications of 5G. Moreover, high Out of Band Emission (OOBE) and inability of supporting the flexible numerology are other demerits of OFDM systems. Thus, looking for alternative waveforms which have the ability of solving OFDM disadvantages are necessary to introduce it as contender candidate for 5G wireless communication systems. In this paper, both of Filtered-OFDM (f-OFDM) and Universal Filtered Multi carrier (UFMC) systems have been discussed for 5G wireless communication systems and compared to OFDM system. The results showed that f-OFDM system is better than both OFDM and UFMC systems and could be introducing as competitive candidate for 5G wireless communication systems because of its ability of reducing OOBE and enhancing BER performance
    • …
    corecore