74 research outputs found

    Performance Analysis of BER in CDMA using Various Coding & Simulation Techniques

    Get PDF
    Wireless Communication is the most important part of our life in today’s time. CDMA system has made it more secure system to communicate within the system. CDMA system has been developed enough to improve various problems like multipath fading, interference, cross talk etc. This paper inculcated various approaches to improve BER in CDMA system with different Coding & Simulation Techniques. This also represents various advantages and limitations of different evaluation/analysis methodology used to evaluate BER

    Suboptimal maximum-likelihood multiuser detection of synchronous CDMA on frequency-selective multipath channels

    Full text link

    On the performance of multicarrier CDMA (MC-CDMA) systems with transmit diveristy

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Phase-locked loop, delay-locked loop, and linear decorrelating detector for asynchronous multirate DS-CDMA system

    Get PDF
    The performance of phase synchronization and code tracking of a digital phase-locked loop (PLL) and delay-locked loop (DLL), respectively, is investigated in wideband asynchronous multirate DS-CDMA system. Dynamic Partial Correlation (DPC) method is proposed to evaluate the autocorrelation and its power spectrum density (PSD) of the cross-correlated terms in the presence of multirate multiple access interference (MMAI) under additive white gaussian noise (AWGN) and fading channel environments. The steady-state probability density function (PDF) and variance of the phase estimator error and code tracking jitter is evaluated by solving the first-order Fokker-Planck equation. Among many linear multiuser detectors which decouple the multiple access interference from each of the interfering users, one-shot window linear decorrelating detector (LDD) based on a one bit period to reduce the complexity of the LDD has attracted wide attention as an implementation scheme. Therefore, we propose Hybrid Selection Diversity/ Maximal Ratio Combining (Hybrid SD/MRC) one-shot window linear decorrelating detector (LDD) for asynchronous DS-CDMA systems. The selection diversity scheme at the input of the Hybrid SD/MRC LDD is based on choosing the branch with the maximum signal-to-noise ratio (SNR) of all filter outputs. The MR Combining scheme at the output of the Hybrid SD/MRC LDD adopts to maximize the output SNR and thus compensates for the enhanced output noise. The Hybrid SD/MRC one-shot LDD with PLL is introduced to track its phase error and to improve the demodulation performance. The probability density functions of the maximum SNR of the SD combiner, the near-far resistance (NFR) of one-shot LDD by Gaussian approximation, and the maximum SNR of the MR combiner for Hybrid SD/MRC LDD are evaluated, and the bit error probability is obtained from these pdfs. The performance of Hybrid SD/MRC one-shot LDD is assessed in a Rayleigh fading channel

    An Investigation to the Performance of Quantized DSSS in Mobile Wireless Communications under AWGN and Multipath Fading Channels

    Get PDF
    This paper presents an investigation to the performance of quantized direct-sequence spread spectrum system (DSSS) in mobile wireless communications systems. To obtain a real world value (RWV), the DSSS received signal is quantized to different levels of fixed-point values. These modes of quantization are evaluated by calculating BER under different channels environments (AWGN, Rayleigh, and Rician multipath fading). The effect of range of the represented values, the number precision and increasing in quantization noise on the performance of quantized DS in mobile wireless communications is also investigated. Based on simulation results, it is observed that quantized direct-sequence offers a trade-off between complexity and noise rejection compared to non-quantized DSSS and making a good representation of the digitized signals to implement the required DSSS in mobile wireless communications

    Adaptive receivers for direct-spread and multi-carrier code division multiple access systems

    Get PDF
    In this thesis, the detection of Direct Sequence Code Division Multiple Access (DS-CDMA) signals in an AWGN channel and Multi-Carrier (MC) CDMA signals in a time-dispersion channel is discussed. The DS-CDMA receiver employs an adaptive multiuser interference canceler that utilizes deadzone limiters in the tentative decision stage. With weights adjusted adaptively, the prior knowledge of signal powers is unnecessary. The steady state error performance of this receiver is obtained and found to be superior to the performance of the same receiver using hard limiters for tentative decisions. The channel is considered non-fading in. this receiver. Modeling the frequency selective channel lading as narrowband fiat-flat fading centered at each subcarrier, the MC-CDMA technique reduces the effect of channel dispersion. A decorrelating multiuser interference canceler is introduced in the MC-CDMA receiver to reduce the multi-access interference, especially when the orthogonality of signature codes is degraded by the fading channel

    Signal processing topics in multicarrier modulation : frequency offset correction for OFDM and multiuser interference cancellation for MC-CDMA

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) is discussed as a special form of multi-carrier modulation (MCM). One major problem of the OFDM system is the sensitivity to an unknown frequency offset at the receiver. To improve the performance of the OFDM system, correction of the frequency offset is required before decision making. An adaptive method of frequency offset correction is presented. The adaptation algorithm used here is based on the LMS and the estimation is proven unbiased. A multiuser communications system having similar signal structure to the OFDM system, termed as multi-carrier code division multiple access (MC-CDMA), is discussed. The MC-CDMA system is susceptible to multiuser interference. Although orthogonal multiuser codes are used, the frequency selective fading might destroy the orthogonality between different codes and result in multiuser interference. The conventional decorrelator can be used to cancel such interference completely but has the disadvantage of enhancing noise power. An adaptive decorrelation algorithm, known as the Bootstrap algorithm, is implemented to separate interference from the desired user\u27s signal. Such algorithm is shown to perform better than the conventional decorrelator particularly in the low interference region

    Near far resistant detection for CDMA personal communication systems.

    Get PDF
    The growth of Personal Communications, the keyword of the 90s, has already the signs of a technological revolution. The foundations of this revolution are currently set through the standardization of the Universal Mobile Telecommunication System (UMTS), a communication system with synergistic terrestrial and satellite segments. The main characteristic of the UMTS radio interface, is the provision of ISDN services. Services with higher than voice data rates require more spectrum, thus techniques that utilize spectrum as efficiently as possible are currently at the forefront of the research community interests. Two of the most spectrally efficient multiple access technologies, namely. Code Division Multiple Access (CDMA) and Time Division Multiple Access (TDMA) concentrate the efforts of the European telecommunity.This thesis addresses problems and. proposes solutions for CDMA systems that must comply with the UMTS requirements. Prompted by Viterbi's call for further extending the potential of CDMA through signal processing at the receiving end, we propose new Minimum Mean Square Error receiver architectures. MMSE detection schemes offer significant advantages compared to the conventional correlation based receivers as they are NEar FAr Resistant (NEFAR) over a wide range of interfering power levels. The NEFAR characteristic of these detectors reduces considerably the requirements of the power control loops currently found in commercial CDMA systems. MMSE detectors are also found, to have significant performance gains over other well established interference cancellation techniques like the decorrelating detector, especially in heavily loaded system conditions. The implementation architecture of MMSE receivers can be either Multiple-Input Multiple Output (MIMO) or Single-Input Single-Output. The later offers not only complexity that is comparable to the conventional detector, but also has the inherent advantage of employing adaptive algorithms which can be used to provide both the dispreading and the interference cancellation function, without the knowledge of the codes of interfering users. Furthermore, in multipath fading channels, adaptive MMSE detectors can exploit the multipath diversity acting as RAKE combiners. The later ability is distinctive to MMSE based receivers, and it is achieved in an autonomous fashion, without the knowledge of the multipath intensity profile. The communicator achieves its performance objectives by the synergy of the signal processor and the channel decoder. According to the propositions of this thesis, the form of the signal processor needs to be changed, in order to exploit the horizons of spread spectrum signaling. However, maximum likelihood channel decoding algorithms need not change. It is the way that these algorithms are utilized that needs to be revis ed. In this respect, we identify three major utilization scenarios and an attempt is made to quantify which of the three best matches the requirements of a UMTS oriented CDMA radio interface. Based on our findings, channel coding can be used as a mapping technique from the information bit to a more ''intelligent" chip, matching the ''intelligence" of the signal processor

    Adaptive DS-CDMA multiuser detection for time variant frequency selective Rayleigh fading channel

    Get PDF
    The current digital wireless mobile system such as IS-95, which is based on direct sequence Code Division Multiple Access (DS-CDMA) technology, will not be able to meet the growing demands for multimedia service due to low information exchanging rate. Its capacity is also limited by multiple accessed interference (MAI) signals. This work focuses on the development of adaptive algorithms for multiuser detection (MUD) and interference suppression for wideband direct sequence code division multiple access (DS-CDMA) systems over time-variant frequency selective fading channels. In addition, channel acquisition and delay estimation techniques are developed to combat the uncertainty introduced by the wireless propagation channel. This work emphasizes fast and simple techniques that can meet practical needs for high data rate signal detection. Most existing literature is not suitable for the large delay spread in wideband systems due to high computational/ hardware complexity. A de-biasing decorrelator is developed whose computational complexity is greatly reduced without sacrificing performance. An adaptive bootstrap symbolbased signal separator is also proposed for a time-variant channel. These detectors achieve MUD for asynchronous, large delay spread, fading channels without training sequences. To achieve high data rate communication, a finite impulse response (FIR) filter based detector is presented for M-ary QAM modulated signals in a multipath Rayleigh fading channel. It is shown that the proposed detector provides a stable performance for QAM signal detection with unknown fading and phase shift. It is also shown that this detector can be easily extended to the reception of any M-ary quadrature modulated signal. A minimum variance decorrelating (MVD) receiver with adaptive channel estimator is presented in this dissertation. It provides comparable performance to a linear MMSE receiver even in a deep fading environment and can be implemented blindly. Using the MVD receiver as a building-block, an adaptive multistage parallel interference cancellation (PIC) scheme and a successive interference cancellation (SIC) scheme were developed. The total number of stages is kept at a minimum as a result of the accurate estimating of the interfering users at the earliest stages, which reduces the implementation complexity, as well as the processing delay. Jointly with the MVD receiver, a new transmit diversity (TD) scheme, called TD-MVD, is proposed. This scheme improves the performance without increasing the bandwidth. Unlike other TD techniques, this TDMVD scheme has the inherent advantage to overcome asynchronous multipath transmission. It brings flexibility in the design of TD antenna systems without restrict signal coordination among those multiple transmissions, and applicable for both existing and next generation of CDMA systems. A maximum likelihood based delay and channel estimation algorithm with reduced computational complexity is proposed. This algorithm uses a diagonal simplicity technique as well as the asymptotically uncorrelated property of the received signal in the frequency domain. In combination with oversampling, this scheme does not suffer from a singularity problem and the performance quickly approaches the Cramer-Rao lower bound (CRLB) while maintaining a computational complexity that is as low as the order of the signal dimension
    corecore