10,569 research outputs found

    Impact of Antenna Placement on Frequency Domain Adaptive Antenna Array in Hybrid FRF Cellular System

    Get PDF
    Frequency domain adaptive antenna array (FDAAA) is an effective method to suppress interference caused by frequency selective fading and multiple-access interference (MAI) in single-carrier (SC) transmission. However, the performance of FDAAA receiver will be affected by the antenna placement parameters such as antenna separation and spread of angle of arrival (AOA). On the other hand, hybrid frequency reuse can be adopted in cellular system to improve the cellular capacity. However, optimal frequency reuse factor (FRF) depends on the channel propagation and transceiver scheme as well. In this paper, we analyze the impact of antenna separation and AOA spread on FDAAA receiver and optimize the cellular capacity by using hybrid FRF

    On the Number of RF Chains and Phase Shifters, and Scheduling Design with Hybrid Analog-Digital Beamforming

    Full text link
    This paper considers hybrid beamforming (HB) for downlink multiuser massive multiple input multiple output (MIMO) systems with frequency selective channels. For this system, first we determine the required number of radio frequency (RF) chains and phase shifters (PSs) such that the proposed HB achieves the same performance as that of the digital beamforming (DB) which utilizes NN (number of transmitter antennas) RF chains. We show that the performance of the DB can be achieved with our HB just by utilizing rtr_t RF chains and 2rt(Nrt+1)2r_t(N-r_t + 1) PSs, where rtNr_t \leq N is the rank of the combined digital precoder matrices of all sub-carriers. Second, we provide a simple and novel approach to reduce the number of PSs with only a negligible performance degradation. Numerical results reveal that only 204020-40 PSs per RF chain are sufficient for practically relevant parameter settings. Finally, for the scenario where the deployed number of RF chains (Na)(N_a) is less than rtr_t, we propose a simple user scheduling algorithm to select the best set of users in each sub-carrier. Simulation results validate theoretical expressions, and demonstrate the superiority of the proposed HB design over the existing HB designs in both flat fading and frequency selective channels.Comment: IEEE Transactions on Wireless Communications (Minor Revision

    Interference-Mitigating Waveform Design for Next-Generation Wireless Systems

    No full text
    A brief historical perspective of the evolution of waveform designs employed in consecutive generations of wireless communications systems is provided, highlighting the range of often conflicting demands on the various waveform characteristics. As the culmination of recent advances in the field the underlying benefits of various Multiple Input Multiple Output (MIMO) schemes are highlighted and exemplified. As an integral part of the appropriate waveform design, cognizance is given to the particular choice of the duplexing scheme used for supporting full-duplex communications and it is demonstrated that Time Division Duplexing (TDD) is substantially outperformed by Frequency Division Duplexing (FDD), unless the TDD scheme is combined with further sophisticated scheduling, MIMOs and/or adaptive modulation/coding. It is also argued that the specific choice of the Direct-Sequence (DS) spreading codes invoked in DS-CDMA predetermines the properties of the system. It is demonstrated that a specifically designed family of spreading codes exhibits a so-called interference-free window (IFW) and hence the resultant system is capable of outperforming its standardised counterpart employing classic Orthogonal Variable Spreading Factor (OVSF) codes under realistic dispersive channel conditions, provided that the interfering multi-user and multipath components arrive within this IFW. This condition may be ensured with the aid of quasisynchronous adaptive timing advance control. However, a limitation of the system is that the number of spreading codes exhibiting a certain IFW is limited, although this problem may be mitigated with the aid of novel code design principles, employing a combination of several spreading sequences in the time-frequency and spatial-domain. The paper is concluded by quantifying the achievable user load of a UTRA-like TDD Code Division Multiple Access (CDMA) system employing Loosely Synchronized (LS) spreading codes exhibiting an IFW in comparison to that of its counterpart using OVSF codes. Both system's performance is enhanced using beamforming MIMOs

    SGD Frequency-Domain Space-Frequency Semiblind Multiuser Receiver with an Adaptive Optimal Mixing Parameter

    Get PDF
    A novel stochastic gradient descent frequency-domain (FD) space-frequency (SF) semiblind multiuser receiver with an adaptive optimal mixing parameter is proposed to improve performance of FD semiblind multiuser receivers with a fixed mixing parameters and reduces computational complexity of suboptimal FD semiblind multiuser receivers in SFBC downlink MIMO MC-CDMA systems where various numbers of users exist. The receiver exploits an adaptive mixing parameter to mix information ratio between the training-based mode and the blind-based mode. Analytical results prove that the optimal mixing parameter value relies on power and number of active loaded users existing in the system. Computer simulation results show that when the mixing parameter is adapted closely to the optimal mixing parameter value, the performance of the receiver outperforms existing FD SF adaptive step-size (AS) LMS semiblind based with a fixed mixing parameter and conventional FD SF AS-LMS training-based multiuser receivers in the MSE, SER and signal to interference plus noise ratio in both static and dynamic environments

    Iterative turbo beamforming for OFDM based hybrid terrestrial-satellite mobile system

    Get PDF
    In the context of orthogonal frequency division multiplexing (OFDM)-based systems, pilot-based beamforming (BF) exhibits a high degree of sensitivity to the pilot sub-carriers. Increasing the number of reference pilots significantly improves BF performance as well as system performance. However, this increase comes at the cost of data throughput, which inevitably shrinks due to transmission of additional pilots. Hence an approach where reference signals available to the BF process can be increased without transmitting additional pilots can exhibit superior system performance without compromising throughput. Thus, the authors present a novel three-stage iterative turbo beamforming (ITBF) algorithm for an OFDM-based hybrid terrestrial-satellite mobile system, which utilises both pilots and data to perform interference mitigation. Data sub-carriers are utilised as virtual reference signals in the BF process. Results show that when compared to non-iterative conventional BF, the proposed ITBF exhibits bit error rate gain of up to 2.5 dB with only one iteration

    A Multi Antenna Receiver for Galileo SoL Applications

    Get PDF
    One of the main features of the Galileo Satellite Navigation System is integrity. To ensure a reliable and robust navigation for Safety of Life applications, like CAT III aircraft landings, new receiver technologies are indispensable. Therefore, the German Aerospace Centre originated the development of a complete safety-of-life Galileo receiver to demonstrate the capabilities of new digital beam-forming and signal-processing algorithms for the detection and mitigation of interference. To take full advantage of those algorithms a carefully designed analogue signal processing is needed. The development addresses several challenging questions in the field of antenna design, frontend development and digital signal processing. The paper will give an insight in the activity and will present latest results
    corecore